-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathjoinp.rs
1218 lines (1115 loc) · 53.1 KB
/
joinp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
static USAGE: &str = r#"
Joins two sets of CSV data on the specified columns using the Polars engine.
The default join operation is an 'inner' join. This corresponds to the
intersection of rows on the keys specified.
Unlike the join command, joinp can process files larger than RAM, is multithreaded,
has join key validation, a maintain row order option, pre-join filtering, supports
asof joins and its output columns can be coalesced (no duplicate columns).
Returns the shape of the join result (number of rows, number of columns) to stderr.
For examples, see /~https://github.com/dathere/qsv/blob/master/tests/test_joinp.rs.
Usage:
qsv joinp [options] <columns1> <input1> <columns2> <input2>
qsv joinp --cross [--validate <arg>] <input1> <input2> [--output <file>]
qsv joinp --non-equi <expr> <input1> <input2> [options] [--output <file>]
qsv joinp --help
joinp arguments:
Both <input1> aka <left> & <input2> aka <right> files need to have headers.
Stdin is not supported.
The columns arguments specify the columns to join for each input. Columns are
referenced by name. Specify multiple columns by separating them with a comma.
Both <columns1> and <columns2> must specify exactly the same number of columns.
Note that <input1> is the left CSV data set and <input2> is the right CSV data set.
joinp options:
--left Do a 'left outer' join. This returns all rows in
first CSV data set, including rows with no
corresponding row in the second data set. When no
corresponding row exists, it is padded out with
empty fields.
--left-anti This returns only the rows in the first CSV data set
that do not have a corresponding row in the second
data set. The output schema is the same as the
first dataset.
--left-semi This returns only the rows in the first CSV data set
that have a corresponding row in the second data set.
The output schema is the same as the first data set.
--right Do a 'right outer' join. This returns all rows in
second CSV data set, including rows with no
corresponding row in the first data set. When no
corresponding row exists, it is padded out with
empty fields. (This is the reverse of 'outer left'.)
--right-anti This returns only the rows in the second CSV data set
that do not have a corresponding row in the first
data set. The output schema is the same as the
second dataset.
--right-semi This returns only the rows in the second CSV data set
that have a corresponding row in the first data set.
The output schema is the same as the second data set.
--full Do a 'full outer' join. This returns all rows in
both data sets with matching records joined. If
there is no match, the missing side will be padded
out with empty fields.
--cross USE WITH CAUTION.
This returns the cartesian product of the CSV
data sets given. The number of rows return is
equal to N * M, where N and M correspond to the
number of rows in the given data sets, respectively.
The columns1 and columns2 arguments are ignored.
--non-equi <expr> Do a non-equi join. The given expression is evaluated
for each row in the left dataset and can refer to columns
in the left and right dataset. If the expression evaluates
to true, the row is joined with the corresponding row in
the right dataset.
The expression is a valid Polars SQL where clause, with each
column name followed by "_left" or "_right" suffixes to indicate
which data set the column belongs to.
(e.g. "salary_left >= min_salary_right AND \
salary_left <= max_salary_right AND \
experience_left >= min_exp_right")
--coalesce Force the join to coalesce columns with the same name.
For inner joins, this is not necessary as the join
columns are automatically coalesced.
--filter-left <arg> Filter the left CSV data set by the given Polars SQL
expression BEFORE the join. Only rows that evaluates
to true are used in the join.
--filter-right <arg> Filter the right CSV data set by the given Polars SQL
expression BEFORE the join. Only rows that evaluates
to true are used in the join.
--validate <arg> Validate the join keys BEFORE performing the join.
Valid values are:
none - No validation is performed.
onetomany - join keys are unique in the left data set.
manytoone - join keys are unique in the right data set.
onetoone - join keys are unique in both left & right data sets.
[default: none]
JOIN OPTIONS:
--maintain-order <arg> Which row order to preserve, if any. Valid values are:
none, left, right, left_right, right_left
Do not rely on any observed ordering without explicitly
setting this parameter. Not specifying any order can improve
performance. Supported for inner, left, right and full joins.
[default: none]
--nulls When set, joins will work on empty fields.
Otherwise, empty fields are completely ignored.
--streaming When set, the join will be done in a streaming fashion.
Only use this when you get out of memory errors.
POLARS CSV PARSING OPTIONS:
--try-parsedates When set, will attempt to parse the columns as dates.
If the parse fails, columns remain as strings.
This is useful when the join keys are formatted as
dates with differing date formats, as the date formats
will be normalized. Note that this will be automatically
enabled when using asof joins.
--infer-len <arg> The number of rows to scan when inferring the schema of the CSV.
Set to 0 to do a full table scan (warning: very slow).
Only used when --cache-schema is 0 or 1 and no cached schema exists or
when --infer-len is 0.
[default: 10000]
--cache-schema <arg> Create and cache Polars schema JSON files.
Ignored when --infer-len is 0.
-2: treat all columns as String. A Polars schema file is created & cached.
-1: treat all columns as String. No Polars schema file is created.
0: do not cache Polars schema. Uses --infer-len to infer schema.
1: cache Polars schema with the following behavior:
- If schema file exists and is newer than input: use cached schema
- If schema file missing/outdated and stats cache exists:
derive schema from stats and cache it
- If no schema or stats cache: infer schema using --infer-len
and cache the result
Schema files use the same name as input with .pschema.json extension
(e.g., data.csv -> data.pschema.json)
[default: 0]
--low-memory Use low memory mode when parsing CSVs. This will use less memory
but will be slower. It will also process the join in streaming mode.
Only use this when you get out of memory errors.
--no-optimizations Disable non-default join optimizations. This will make joins slower.
Only use this when you get join errors.
--ignore-errors Ignore errors when parsing CSVs. If set, rows with errors
will be skipped. If not set, the query will fail.
Only use this when debugging queries, as polars does batched
parsing and will skip the entire batch where the error occurred.
To get more detailed error messages, set the environment variable
POLARS_BACKTRACE_IN_ERR=1 before running the join.
--decimal-comma Use comma as the decimal separator when parsing CSVs.
Otherwise, use period as the decimal separator.
Note that you'll need to set --delimiter to an alternate delimiter
other than the default comma if you are using this option.
ASOF JOIN OPTIONS:
--asof Do an 'asof' join. This is similar to a left inner
join, except we match on nearest key rather than
equal keys. Note that both CSV data sets will be SORTED
AUTOMATICALLY on the join columns.
Particularly useful for time series data.
--left_by <arg> Do an 'asof_by' join - a special implementation of the asof
join that searches for the nearest keys within a subgroup
set by the asof_by columns. This specifies the column/s for
the left CSV. Columns are referenced by name. Specify
multiple columns by separating them with a comma.
--right_by <arg> Do an 'asof_by' join. This specifies the column/s for
the right CSV.
--strategy <arg> The strategy to use for the asof join:
backward - For each row in the first CSV data set,
we find the last row in the second data set
whose key is less than or equal to the key
in the first data set.
forward - For each row in the first CSV data set,
we find the first row in the second data set
whose key is greater than or equal to the key
in the first data set.
nearest - selects the last row in the second data set
whose value is nearest to the value in the
first data set.
[default: backward]
--tolerance <arg> The tolerance for the nearest asof join. This is only
used when the nearest strategy is used. The
tolerance is a positive integer that specifies
the maximum number of rows to search for a match.
If the join is done on a column of type Date, Time or
DateTime, then the tolerance is interpreted using
the following language:
1d - 1 day
1h - 1 hour
1m - 1 minute
1s - 1 second
1ms - 1 millisecond
1us - 1 microsecond
1ns - 1 nanosecond
1w - 1 week
1mo - 1 month
1q - 1 quarter
1y - 1 year
1i - 1 index count
Or combine them: “3d12h4m25s” # 3 days, 12 hours,
4 minutes, and 25 seconds
Suffix with “_saturating” to indicate that dates too
large for their month should saturate at the largest date
(e.g. 2022-02-29 -> 2022-02-28) instead of erroring.
OUTPUT FORMAT OPTIONS:
--sql-filter <SQL> The SQL expression to apply against the join result.
Used to select columns and filter rows AFTER running the join.
Be sure to select from the "join_result" table when formulating
the SQL expression.
(e.g. "select c1, c2 as colname from join_result where c2 > 20")
--datetime-format <fmt> The datetime format to use writing datetimes.
See https://docs.rs/chrono/latest/chrono/format/strftime/index.html
for the list of valid format specifiers.
--date-format <fmt> The date format to use writing dates.
--time-format <fmt> The time format to use writing times.
--float-precision <arg> The number of digits of precision to use when writing floats.
(default: 6)
--null-value <arg> The string to use when writing null values.
(default: <empty string>)
JOIN KEY TRANSFORMATION OPTIONS:
Note that transformations are applied to TEMPORARY
join key columns. The original columns are not modified
and the TEMPORARY columns are removed after the join.
-i, --ignore-case When set, joins are done case insensitively.
-z, --ignore-leading-zeros When set, joins are done ignoring leading zeros.
Note that this is only applied to the join keys for
both numeric and string columns. Also note that
Polars will automatically remove leading zeros from
numeric columns when it infers the schema.
To force the schema to be all String types,
set --cache-schema to -1 or -2.
-N, --norm-unicode <arg> When set, join keys are Unicode normalized.
Valid values are:
nfc - Normalization Form C
nfd - Normalization Form D
nfkc - Normalization Form KC
nfkd - Normalization Form KD
none - No normalization is performed.
[default: none]
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-d, --delimiter <arg> The field delimiter for reading/writing CSV data.
Must be a single character. (default: ,)
-q, --quiet Do not return join shape to stderr.
"#;
use std::{
env,
fs::File,
io::{self, BufReader, BufWriter, Read, Write},
mem::swap,
path::{Path, PathBuf},
str,
};
use polars::prelude::*;
use serde::Deserialize;
use tempfile::tempdir;
use crate::{
cmd::sqlp::compress_output_if_needed, config::Delimiter, util, util::get_stats_records,
CliResult,
};
#[derive(Deserialize)]
struct Args {
arg_columns1: String,
arg_input1: String,
arg_columns2: String,
arg_input2: String,
flag_left: bool,
flag_left_anti: bool,
flag_left_semi: bool,
flag_right: bool,
flag_right_anti: bool,
flag_right_semi: bool,
flag_full: bool,
flag_cross: bool,
flag_non_equi: Option<String>,
flag_coalesce: bool,
flag_filter_left: Option<String>,
flag_filter_right: Option<String>,
flag_validate: Option<String>,
flag_maintain_order: Option<String>,
flag_nulls: bool,
flag_streaming: bool,
flag_try_parsedates: bool,
flag_decimal_comma: bool,
flag_infer_len: usize,
flag_cache_schema: i8,
flag_low_memory: bool,
flag_no_optimizations: bool,
flag_ignore_errors: bool,
flag_asof: bool,
flag_left_by: Option<String>,
flag_right_by: Option<String>,
flag_strategy: Option<String>,
flag_tolerance: Option<String>,
flag_sql_filter: Option<String>,
flag_datetime_format: Option<String>,
flag_date_format: Option<String>,
flag_time_format: Option<String>,
flag_float_precision: Option<usize>,
flag_null_value: String,
flag_output: Option<String>,
flag_delimiter: Option<Delimiter>,
flag_quiet: bool,
flag_ignore_case: bool,
flag_ignore_leading_zeros: bool,
flag_norm_unicode: Option<String>,
}
#[derive(PartialEq, Eq)]
enum SpecialJoin {
NonEqui(String),
AsOf,
None,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let mut args: Args = util::get_args(USAGE, argv)?;
// always try to parse dates when its an asof join
// just in case the user doesn't specify it
// and they're using date/time/datetime columns
if args.flag_asof {
args.flag_try_parsedates = true;
}
let tmpdir = tempdir()?;
let join = args.new_join(&tmpdir)?;
let flag_validate = args
.flag_validate
.unwrap_or_else(|| "none".to_string())
.to_lowercase();
let validation = match flag_validate.as_str() {
// no unique checks
"manytomany" | "none" => JoinValidation::ManyToMany,
// join keys are unique in the left data set
"onetomany" => JoinValidation::OneToMany,
// join keys are unique in the right data set
"manytoone" => JoinValidation::ManyToOne,
// join keys are unique in both left & right data sets
"onetoone" => JoinValidation::OneToOne,
s => return fail_incorrectusage_clierror!("Invalid join validation: {s}"),
};
let flag_maintain_order = args
.flag_maintain_order
.unwrap_or_else(|| "none".to_string())
.to_lowercase();
let maintain_order = match flag_maintain_order.as_str() {
"none" => MaintainOrderJoin::None,
"left" => MaintainOrderJoin::Left,
"right" => MaintainOrderJoin::Right,
"left_right" => MaintainOrderJoin::LeftRight,
"right_left" => MaintainOrderJoin::RightLeft,
s => return fail_incorrectusage_clierror!("Invalid maintain order option: {s}"),
};
let flag_norm_unicode = args
.flag_norm_unicode
.unwrap_or_else(|| "none".to_string())
.to_lowercase();
let normalization_form = match flag_norm_unicode.as_str() {
"nfc" => Some(UnicodeForm::NFC),
"nfd" => Some(UnicodeForm::NFD),
"nfkc" => Some(UnicodeForm::NFKC),
"nfkd" => Some(UnicodeForm::NFKD),
"none" => None,
s => return fail_incorrectusage_clierror!("Invalid normalization form: {s}"),
};
let join_shape: (usize, usize) = match (
args.flag_left,
args.flag_left_anti,
args.flag_left_semi,
args.flag_right,
args.flag_right_anti,
args.flag_right_semi,
args.flag_full,
args.flag_cross,
args.flag_asof,
args.flag_non_equi.is_some(),
) {
// default inner join
(false, false, false, false, false, false, false, false, false, false) => join.run(
JoinType::Inner,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// left join
(true, false, false, false, false, false, false, false, false, false) => join.run(
JoinType::Left,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// left anti join
(false, true, false, false, false, false, false, false, false, false) => join.run(
JoinType::Anti,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// left semi join
(false, false, true, false, false, false, false, false, false, false) => join.run(
JoinType::Semi,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// right join
(false, false, false, true, false, false, false, false, false, false) => join.run(
JoinType::Right,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// right anti join
// swap left and right data sets and run left anti join
(false, false, false, false, true, false, false, false, false, false) => {
let mut swapped_join = join;
swap(&mut swapped_join.left_lf, &mut swapped_join.right_lf);
swap(&mut swapped_join.left_sel, &mut swapped_join.right_sel);
swapped_join.run(
JoinType::Anti,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
)
},
// right semi join
// swap left and right data sets and run left semi join
(false, false, false, false, false, true, false, false, false, false) => {
let mut swapped_join = join;
swap(&mut swapped_join.left_lf, &mut swapped_join.right_lf);
swap(&mut swapped_join.left_sel, &mut swapped_join.right_sel);
swapped_join.run(
JoinType::Semi,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
)
},
// full join
(false, false, false, false, false, false, true, false, false, false) => join.run(
JoinType::Full,
validation,
maintain_order,
SpecialJoin::None,
normalization_form,
),
// cross join
(false, false, false, false, false, false, false, true, false, false) => join.run(
JoinType::Cross,
validation,
MaintainOrderJoin::None,
SpecialJoin::None,
normalization_form,
),
// as of join
(false, false, false, false, false, false, false, false, true, false) => {
// safety: flag_strategy is always is_some() as it has a default value
args.flag_strategy = Some(args.flag_strategy.unwrap().to_lowercase());
let strategy = match args.flag_strategy.as_deref() {
Some("backward") | None => AsofStrategy::Backward,
Some("forward") => AsofStrategy::Forward,
Some("nearest") => AsofStrategy::Nearest,
Some(s) => return fail_incorrectusage_clierror!("Invalid asof strategy: {}", s),
};
let mut asof_options = AsOfOptions {
strategy,
..Default::default()
};
if strategy == AsofStrategy::Nearest {
if let Some(ref tolerance) = args.flag_tolerance {
// If the tolerance is a positive integer, it is tolerance number of rows.
// Otherwise, it is a tolerance date language spec.
if let Ok(numeric_tolerance) = atoi_simd::parse_pos::<u64>(tolerance.as_bytes())
{
asof_options.tolerance = Some(AnyValue::UInt64(numeric_tolerance));
} else {
asof_options.tolerance_str = Some(tolerance.into());
}
}
}
if args.flag_left_by.is_some() {
asof_options.left_by = Some(
args.flag_left_by
.unwrap()
.split(',')
.map(PlSmallStr::from_str)
.collect(),
);
}
if args.flag_right_by.is_some() {
asof_options.right_by = Some(
args.flag_right_by
.unwrap()
.split(',')
.map(PlSmallStr::from_str)
.collect(),
);
}
join.run(
JoinType::AsOf(asof_options),
validation,
MaintainOrderJoin::None,
SpecialJoin::AsOf,
normalization_form,
)
},
// non-equi join
(false, false, false, false, false, false, false, false, false, true) => {
// JoinType::Inner is just a placeholder value to satisfy the compiler
// as this is a non-equi join
join.run(
JoinType::Inner,
validation,
maintain_order,
SpecialJoin::NonEqui(args.flag_non_equi.unwrap()),
normalization_form,
)
},
_ => fail_incorrectusage_clierror!("Please pick exactly one join operation."),
}?;
if !args.flag_quiet {
eprintln!("{join_shape:?}");
}
Ok(())
}
struct JoinStruct {
left_lf: LazyFrame,
left_sel: String,
right_lf: LazyFrame,
right_sel: String,
output: Option<String>,
delim: u8,
coalesce: bool,
streaming: bool,
no_optimizations: bool,
sql_filter: Option<String>,
datetime_format: Option<String>,
date_format: Option<String>,
time_format: Option<String>,
float_precision: Option<usize>,
null_value: String,
ignore_case: bool,
ignore_leading_zeros: bool,
}
impl JoinStruct {
#[allow(clippy::needless_pass_by_value)]
fn run(
mut self,
jointype: JoinType,
validation: JoinValidation,
maintain_order: MaintainOrderJoin,
special_join: SpecialJoin,
normalization_form: Option<UnicodeForm>,
) -> CliResult<(usize, usize)> {
let mut left_selcols: Vec<_> = self
.left_sel
.split(',')
.map(polars::lazy::dsl::col)
.collect();
let mut right_selcols: Vec<_> = self
.right_sel
.split(',')
.map(polars::lazy::dsl::col)
.collect();
// Handle ignore_case, ignore_leading_zeros, and unicode normalization transformations
let keys_transformed =
if self.ignore_case || self.ignore_leading_zeros || normalization_form.is_some() {
// Create transformation function that applies all enabled transformations
let transform_col = |col: Expr| {
let mut transformed = col.cast(DataType::String);
if self.ignore_leading_zeros {
transformed = transformed.str().replace_all(lit(r"^0+"), lit(""), false);
}
if self.ignore_case {
transformed = transformed.str().to_lowercase();
}
if let Some(ref form) = normalization_form {
transformed = transformed.str().normalize(form.clone());
}
transformed
};
// Helper to get clean column name without col("") wrapper
let clean_col_name = |col: &Expr| {
col.to_string()
.trim_start_matches(r#"col(""#)
.trim_end_matches(r#"")"#)
.to_string()
};
// Transform left dataframe columns
for col in &left_selcols {
let col_name = clean_col_name(col);
let temp_col_name = format!("_qsv-{col_name}-transformed");
self.left_lf = self
.left_lf
.with_column(transform_col(col.clone()).alias(&temp_col_name));
}
// Transform right dataframe columns
for col in &right_selcols {
let col_name = clean_col_name(col);
let temp_col_name = format!("_qsv-{col_name}-transformed");
self.right_lf = self
.right_lf
.with_column(transform_col(col.clone()).alias(&temp_col_name));
}
// Update selcols to use transformed column names
left_selcols = left_selcols
.iter()
.map(|col| {
polars::lazy::dsl::col(format!("_qsv-{}-transformed", clean_col_name(col)))
})
.collect();
right_selcols = right_selcols
.iter()
.map(|col| {
polars::lazy::dsl::col(format!("_qsv-{}-transformed", clean_col_name(col)))
})
.collect();
true
} else {
false
};
let left_selcols_len = left_selcols.len();
let right_selcols_len = right_selcols.len();
if left_selcols_len != right_selcols_len {
return fail_incorrectusage_clierror!(
"Both columns1 ({left_selcols:?}) and columns2 ({right_selcols:?}) must specify \
the same number of columns ({left_selcols_len } != {right_selcols_len})."
);
}
let coalesce_flag = if self.coalesce {
JoinCoalesce::CoalesceColumns
} else {
JoinCoalesce::JoinSpecific
};
let mut optflags = OptFlags::from_bits_truncate(0);
if self.no_optimizations {
optflags |= OptFlags::TYPE_COERCION;
} else {
optflags |= OptFlags::PROJECTION_PUSHDOWN
| OptFlags::PREDICATE_PUSHDOWN
| OptFlags::CLUSTER_WITH_COLUMNS
| OptFlags::TYPE_COERCION
| OptFlags::SIMPLIFY_EXPR
| OptFlags::FILE_CACHING
| OptFlags::SLICE_PUSHDOWN
| OptFlags::COMM_SUBPLAN_ELIM
| OptFlags::COMM_SUBEXPR_ELIM
| OptFlags::ROW_ESTIMATE
| OptFlags::FAST_PROJECTION;
}
optflags.set(OptFlags::STREAMING, self.streaming);
// log::debug!("Optimization flags: {optimization_flags:?}");
let join_results = if jointype == JoinType::Cross {
// cross join doesn't need join columns
self.left_lf
.with_optimizations(optflags)
.join_builder()
.with(self.right_lf.with_optimizations(optflags))
.how(JoinType::Cross)
.coalesce(coalesce_flag)
.allow_parallel(true)
.validate(validation)
.finish()
.collect()?
} else {
if special_join == SpecialJoin::AsOf {
// it's an asof join
// sort by the asof columns, as asof joins require sorted join column data
let left_selcols_vec: Vec<PlSmallStr> =
self.left_sel.split(',').map(PlSmallStr::from_str).collect();
self.left_lf = self
.left_lf
.sort(left_selcols_vec, SortMultipleOptions::default());
let right_selcols_vec: Vec<PlSmallStr> = self
.right_sel
.split(',')
.map(PlSmallStr::from_str)
.collect();
self.right_lf = self
.right_lf
.sort(right_selcols_vec, SortMultipleOptions::default());
}
if let SpecialJoin::NonEqui(expr) = special_join {
// it's a non-equi join
let expr = polars::sql::sql_expr(expr)?;
// Add "_left" & "_right" suffixes to all columns before doing the non-equi join.
// This is necessary as the NonEqui expression is a SQL where clause and the
// column names for the left and right data sets are used in the expression.
self.left_lf = self.left_lf.select([all().name().suffix("_left")]);
self.right_lf = self.right_lf.select([all().name().suffix("_right")]);
self.left_lf
.with_optimizations(optflags)
.join_builder()
.with(self.right_lf.with_optimizations(optflags))
.join_where(vec![expr])
.collect()?
} else {
// it's one of the "standard" joins as indicated by jointype
self.left_lf
.with_optimizations(optflags)
.join_builder()
.with(self.right_lf.with_optimizations(optflags))
.left_on(left_selcols)
.right_on(right_selcols)
.how(jointype)
.maintain_order(maintain_order)
.coalesce(coalesce_flag)
.allow_parallel(true)
.validate(validation)
.finish()
.collect()?
}
};
let mut results_df = if let Some(sql_filter) = &self.sql_filter {
let mut ctx = polars::sql::SQLContext::new();
ctx.register("join_result", join_results.lazy());
ctx.execute(sql_filter)
.and_then(polars::prelude::LazyFrame::collect)?
} else {
join_results
};
if keys_transformed {
// Remove temporary transformed columns and
// duplicate right-side join columns if coalesce is true
let cols = results_df.get_column_names();
let mut keep_cols: Vec<String> = Vec::new();
let left_join_cols: Vec<String> = self
.left_sel
.split(',')
.map(std::string::ToString::to_string)
.collect();
for col in cols {
if col.contains("-transformed") {
continue;
}
// For join columns, only keep the left version if coalesce is true
if self.coalesce && col.ends_with("_right") {
let base_col = col.trim_end_matches("_right");
if left_join_cols.contains(&base_col.to_string()) {
continue;
}
}
keep_cols.push(col.to_string());
}
results_df = results_df.select(keep_cols)?;
}
let mut out_delim = self.delim;
let mut out_writer = match self.output {
Some(ref output_file) => {
out_delim = tsvssv_delim(output_file, self.delim);
// no need to use buffered writer here, as CsvWriter already does that
let path = Path::new(&output_file);
Box::new(File::create(path).unwrap()) as Box<dyn Write>
},
None => Box::new(io::stdout()) as Box<dyn Write>,
};
// shape is the number of rows and columns
let join_shape = results_df.shape();
CsvWriter::new(&mut out_writer)
.include_header(true)
.with_separator(out_delim)
.with_datetime_format(self.datetime_format)
.with_date_format(self.date_format)
.with_time_format(self.time_format)
.with_float_precision(self.float_precision)
.with_null_value(self.null_value)
.include_bom(util::get_envvar_flag("QSV_OUTPUT_BOM"))
.finish(&mut results_df)?;
compress_output_if_needed(self.output)?;
Ok(join_shape)
}
}
impl Args {
fn new_join(&mut self, tmpdir: &tempfile::TempDir) -> CliResult<JoinStruct> {
// Helper function to create a LazyFrameReader with common settings
fn create_lazy_reader(
file_path: &str,
comment_char: Option<&PlSmallStr>,
args: &Args,
delim: u8,
) -> LazyCsvReader {
LazyCsvReader::new(file_path)
.with_has_header(true)
.with_missing_is_null(args.flag_nulls)
.with_comment_prefix(comment_char.cloned())
.with_separator(tsvssv_delim(file_path, delim))
.with_try_parse_dates(args.flag_try_parsedates)
.with_decimal_comma(args.flag_decimal_comma)
.with_low_memory(args.flag_low_memory)
.with_ignore_errors(args.flag_ignore_errors)
}
// Helper function to handle schema creation from stats
fn create_schema_from_stats(input_path: &Path, args: &Args) -> CliResult<Schema> {
let schema_args = util::SchemaArgs {
flag_enum_threshold: 0,
flag_ignore_case: false,
flag_strict_dates: false,
flag_pattern_columns: crate::select::SelectColumns::parse("").unwrap(),
flag_dates_whitelist: String::new(),
flag_prefer_dmy: false,
flag_force: false,
flag_stdout: false,
flag_jobs: Some(util::njobs(None)),
flag_no_headers: false,
flag_delimiter: args.flag_delimiter,
arg_input: Some(input_path.to_string_lossy().into_owned()),
flag_memcheck: false,
};
let (csv_fields, csv_stats) =
get_stats_records(&schema_args, util::StatsMode::PolarsSchema)?;
let mut schema = Schema::with_capacity(csv_stats.len());
for (idx, stat) in csv_stats.iter().enumerate() {
schema.insert(
PlSmallStr::from_str(
simdutf8::basic::from_utf8(csv_fields.get(idx).unwrap()).unwrap(),
),
{
let datatype = &stat.r#type;
#[allow(clippy::match_same_arms)]
match datatype.as_str() {
"String" => polars::datatypes::DataType::String,
"Integer" => {
let min = stat.min.as_ref().unwrap();
let max = stat.max.as_ref().unwrap();
if min.parse::<i32>().is_ok() && max.parse::<i32>().is_ok() {
polars::datatypes::DataType::Int32
} else {
polars::datatypes::DataType::Int64
}
},
"Float" => {
let min = stat.min.as_ref().unwrap();
let max = stat.max.as_ref().unwrap();
if min.parse::<f32>().is_ok() && max.parse::<f32>().is_ok() {
polars::datatypes::DataType::Float32
} else {
polars::datatypes::DataType::Float64
}
},
"Boolean" => polars::datatypes::DataType::Boolean,
"Date" => polars::datatypes::DataType::Date,
_ => polars::datatypes::DataType::String,
}
},
);
}
Ok(schema)
}
/// Helper function to setup a LazyFrame with schema handling based on cache_schema flag.
///
/// # Arguments
/// * `input_path` - Path to the input CSV file
/// * `comment_char` - Optional comment character to ignore lines starting with it
/// * `args` - Command line arguments containing schema caching and other options
/// * `delim` - Delimiter character for CSV parsing
/// * `debuglog_flag` - Whether debug logging is enabled
///
/// # Returns
/// Returns a tuple containing:
/// * The configured LazyFrame for reading the CSV
/// * A boolean indicating if a new schema needs to be created and cached
///
/// # Schema Caching Modes
/// * `0` - No schema caching, infer schema from data sample using Polars
/// * `1` - Cache inferred schema from stats in .pschema.json file
/// * `-1` - Use string schema for all columns without caching
/// * `-2` - Use string schema for all columns and cache it
///
/// # Errors
/// Returns error if:
/// * File operations fail
/// * Schema parsing fails
/// * Invalid cache_schema value provided
fn setup_lazy_frame(
input_path: &Path,
comment_char: Option<&PlSmallStr>,
args: &Args,
delim: u8,
debuglog_flag: bool,
) -> CliResult<(LazyFrame, bool)> {
let schema_file = input_path.canonicalize()?.with_extension("pschema.json");
let mut create_schema = false;
let cache_schema = if args.flag_infer_len == 0 {
0
} else {
args.flag_cache_schema
};
let mut reader =
create_lazy_reader(input_path.to_str().unwrap(), comment_char, args, delim);
match cache_schema {
0 => {
reader = reader.with_infer_schema_length(if args.flag_infer_len == 0 {
None
} else {
Some(args.flag_infer_len)
});
},
1 => {
let mut valid_schema_exists = schema_file.exists()
&& schema_file.metadata()?.modified()?
> input_path.metadata()?.modified()?;
if !valid_schema_exists {
let schema = create_schema_from_stats(input_path, args)?;
let stats_schema = Arc::new(schema);
let stats_schema_json = serde_json::to_string_pretty(&stats_schema)?;
let mut file = BufWriter::new(File::create(&schema_file)?);
file.write_all(stats_schema_json.as_bytes())?;
file.flush()?;
if debuglog_flag {
log::debug!("Saved schema to file: {}", schema_file.display());
}
valid_schema_exists = true;
}
if valid_schema_exists {
let file = File::open(&schema_file)?;
let mut buf_reader = BufReader::new(file);
let mut schema_json = String::with_capacity(100);
buf_reader.read_to_string(&mut schema_json)?;
let schema: Schema = serde_json::from_str(&schema_json)?;
reader = reader.with_schema(Some(Arc::new(schema)));
create_schema = false;
} else {
reader = reader.with_infer_schema_length(Some(args.flag_infer_len));
create_schema = true;
}
},
-1 | -2 => {
// get the headers from the input file
let mut rdr = csv::Reader::from_path(input_path)?;
let csv_fields = rdr.byte_headers()?.clone();
drop(rdr);