-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-algo.py
103 lines (95 loc) · 6.06 KB
/
plot-algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from omegaconf import DictConfig, OmegaConf
import logging
from pathlib import Path
import yaml
import numpy as np
from datetime import datetime
from dyann.util import stringify_dict
from dyann.vis import draw_loglog, draw_series
# Initialise message logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s - %(name)s: %(message)s")
log = logging.getLogger(__name__)
def main():
# Load base configuration values
cfg_path = Path(".").joinpath("conf/plot.yaml")
if not cfg_path.exists():
log.info(f"No config at {cfg_path}")
return
default_cfg = OmegaConf.load(cfg_path)
base_cfg = OmegaConf.merge(default_cfg, OmegaConf.from_cli())
log.info(OmegaConf.to_yaml(base_cfg))
timestamp = f"{datetime.now().strftime('%y-%m-%d-%H-%M-%S')}"
out = Path(base_cfg.output)
img = Path(base_cfg.img_out)
img.mkdir(exist_ok=True, parents=True) # Make sure the img directory exists
for p_dataset in sorted(out.glob("*")):
if p_dataset.is_file() or not p_dataset.name in base_cfg.data:
continue
runtime_vs_recall, recall_series, recall_series, runtime_series, buildtime_series, searchtime_series = [], [], [], [], [], []
for p_algo in sorted(p_dataset.glob("*")):
if p_algo.is_file() or not p_algo.name in base_cfg.algo:
continue
for p_result in sorted(p_algo.glob("*")):
if not p_result.is_file():
continue
log.info(f"Reading {p_result}")
with p_result.open("rt") as f:
ret_all = yaml.safe_load(f)
for ret in ret_all:
# "ret" is for one param_build. "ret" contains several results for each param_query
recall, runtime, buildtime, searchtime, ctrls = [], [], [], [], []
for r in ret:
recall.append(r["recall"][0]) #top50
runtime.append(r["runtime_per_query"])
buildtime.append(r["buildtime_per_query"])
searchtime.append(r["searchtime_per_query"])
ctrls.append(list(r['param_query'].values())[0]) # Just extract a value
line = {
"xs": np.array(recall), "ys": 1.0 / np.array(runtime), "ctrls": ctrls,
"ctrl_label": list(ret[0]['param_query'])[0], # Just extract the name of query param
"label": p_algo.name + "(" + stringify_dict(d=ret[0]['param_build']) + ")"
}
runtime_vs_recall.append(line.copy())
moving_avg = line.pop("xs")
window = int(base_cfg.window * len(moving_avg[0,:]))
for i in range(len(moving_avg)):
cumsum = np.cumsum(np.insert(moving_avg[i,:], 0, np.repeat(moving_avg[i,0], window)))
moving_avg[i,:] = (cumsum[window:] - cumsum[:-window]) / float(window)
line["ys"] = moving_avg
recall_series.append(line.copy())
moving_avg = np.array(runtime)
window = int(base_cfg.window * len(moving_avg[0,:]))
for i in range(len(moving_avg)):
cumsum = np.cumsum(np.insert(moving_avg[i,:], 0, np.repeat(moving_avg[i,0], window)))
moving_avg[i,:] = (cumsum[window:] - cumsum[:-window]) / float(window)
line["ys"] = moving_avg
runtime_series.append(line.copy())
moving_avg = np.array(buildtime)
window = int(base_cfg.window * len(moving_avg[0,:]))
for i in range(len(moving_avg)):
cumsum = np.cumsum(np.insert(moving_avg[i,:], 0, np.repeat(moving_avg[i,0], window)))
moving_avg[i,:] = (cumsum[window:] - cumsum[:-window]) / float(window)
line["ys"] = moving_avg
buildtime_series.append(line.copy())
moving_avg = np.array(searchtime)
window = int(base_cfg.window * len(moving_avg[0,:]))
for i in range(len(moving_avg)):
cumsum = np.cumsum(np.insert(moving_avg[i,:], 0, np.repeat(moving_avg[i,0], window)))
moving_avg[i,:] = (cumsum[window:] - cumsum[:-window]) / float(window)
line["ys"] = moving_avg
searchtime_series.append(line.copy())
log.info(f"Writing to {img.resolve()}")
# Save the images to the result_img directory
draw_loglog(lines=runtime_vs_recall, xlabel="recall", ylabel="query/sec", title=f"Parameter sweep {p_dataset.name}",
filename=img / f"sweep-params-{p_dataset.name}-{timestamp}.png", with_ctrl=base_cfg.with_query_param, with_error=False, width=base_cfg.width, height=base_cfg.height)
draw_series(lines=recall_series, ylabel=f"recall (moving avg)", title=f"Recall series {p_dataset.name}",
filename=img / f"sweep-recall-{p_dataset.name}-{timestamp}.png", with_ctrl=base_cfg.with_query_param, width=base_cfg.width, height=base_cfg.height)
draw_series(lines=runtime_series, ylabel="runtime (moving avg)", title=f"Runtime series {p_dataset.name}",
filename=img / f"sweep-runtime-{p_dataset.name}-{timestamp}.png", with_ctrl=base_cfg.with_query_param, width=base_cfg.width, height=base_cfg.height)
draw_series(lines=buildtime_series, ylabel="build time (moving avg)", title=f"Buildtime series {p_dataset.name}",
filename=img / f"sweep-buildtime-{p_dataset.name}-{timestamp}.png", with_ctrl=base_cfg.with_query_param, width=base_cfg.width, height=base_cfg.height)
draw_series(lines=searchtime_series, ylabel="search time (moving avg)", title=f"Searchtime series {p_dataset.name}",
filename=img / f"sweep-searchtime-{p_dataset.name}-{timestamp}.png", with_ctrl=base_cfg.with_query_param, width=base_cfg.width, height=base_cfg.height)
log.info("Finished writing")
if __name__ == "__main__":
main()