-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcuSIFT.cu
455 lines (390 loc) · 14.6 KB
/
cuSIFT.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
// TODO: pull out / parameterize magic numbers; maybe cuSIFTOptions?
// TODO: pull out parameters into SiftData so we don't have ridiculously long function signatures
// TODO: compare ScaleDown functions vlfeat
// TODO: add cuImage member variable into SiftData?
// TODO: rename SiftData to cuSIFT
// TODO: double check peak thresh
// TODO: iliagnup 128?
#include "cuSIFT.h"
#include "cuSIFT_D.h"
#include "cuSIFT_D.cu"
SiftData::SiftData(int maxPts, bool host, bool dev) {
this->numPts = 0;
this->maxPts = maxPts;
int numBytes = sizeof(SiftPoint) * maxPts;
#ifdef MANAGEDMEM
safeCall(cudaMallocManaged((void **)&m_data, numBytes));
#else
h_data = NULL;
if (host) {
h_data = (SiftPoint *)malloc(numBytes);
}
d_data = NULL;
if (dev) {
safeCall(cudaMalloc((void **)&d_data, numBytes));
}
#endif
}
SiftData::~SiftData() {
#ifdef MANAGEDMEM
safeCall(cudaFree(m_data));
#else
if (d_data != NULL) {
safeCall(cudaFree(d_data));
}
d_data = NULL;
if (h_data != NULL) {
free(h_data);
}
h_data = NULL;
#endif
numPts = 0;
maxPts = 0;
}
void SiftData::Synchronize() {
#ifdef MANAGEDMEM
safeCall(cudaDeviceSynchronize());
#else
if (h_data)
safeCall(cudaMemcpy(h_data, d_data, sizeof(SiftPoint) * numPts, cudaMemcpyDeviceToHost));
#endif
}
void SiftData::Extract(float *im, int width, int height, float subsampling) {
cuImage *cuIm = new cuImage(width, height, im);
TimerGPU timer(0);
int totPts = 0;
// Keep track of total number of sift points as well as the maximum number
safeCall(cudaMemcpyToSymbol(d_PointCounter, &totPts, sizeof(int)));
safeCall(cudaMemcpyToSymbol(d_MaxNumPoints, &this->maxPts, sizeof(int)));
// TODO: what is this? why plus 3? This is for temporary space
// TODO: move NUM_SCALES over
const int nd = NUM_SCALES + 3;
// Grab width, height, pitch
int w = cuIm->width;
int h = cuIm->height;
int p = cuIm->pitch;
int size = 0; // image sizes
int sizeTmp = nd * h * p; // laplace buffer sizes
// Determine how much memory to allocate for extraction
for (int i = 0; i < numOctaves; i++) {
w /= 2;
h /= 2;
int p = iAlignUp(w, 128);
size += h * p;
sizeTmp += nd * h * p;
}
float *memoryTmp = NULL;
size_t pitch;
size += sizeTmp;
// TODO: ?? Size = size of height * pitch for each octave + (scales + 3) * height * pitch + ...
// Return pitch CUDA allocates
safeCall(cudaMallocPitch((void **)&memoryTmp, &pitch, (size_t)4096, (size+4095)/4096*sizeof(float)));
// TODO: memorySub vs memoryTmp?
float *memorySub = memoryTmp + sizeTmp;
ExtractSiftLoop(*cuIm, numOctaves, initBlur, subsampling, memoryTmp, memorySub);
// ExtractSiftLoop2(cuIm.get(), memoryTmp, memorySub);
// Copy back number of points found
safeCall(cudaMemcpyFromSymbol(&this->numPts, d_PointCounter, sizeof(int)));
// We should only keep up to maxPts number of SiftPoints
this->numPts = (this->numPts < this->maxPts ? this->numPts : this->maxPts);
safeCall(cudaFree(memoryTmp));
Synchronize();
double totTime = timer.read();
delete cuIm;
#ifndef VERBOSE
printf("Total time incl memory = %.2f ms\n", totTime);
#endif
}
// TODO: bring rootsift back
// void ExtractRootSift(SiftData &siftData, cuImage &img, int numOctaves, double initBlur, float subsampling)
// {
// TimerGPU timer(0);
// ExtractSiftHelper(siftData, img, numOctaves, initBlur, thresh, lowestScale, subsampling);
// ConvertSiftToRootSift(siftData);
// SynchronizeSift(siftData);
// double totTime = timer.read();
// #ifndef VERBOSE
// printf("Total time incl memory = %.2f ms\n", totTime);
// #endif
// }
// void SiftData::ExtractSiftLoop2(cuImage *img, float *memoryTmp, float *memorySub) {
// TimerGPU timer(0);
// float currBlur = initBlur;
// float currSubsampling = initSubsampling;
// for (int octaveIndex = 0; octaveIndex < numOctaves; octaveIndex++) {
// fprintf(stderr, "Processing octave %d\n", octaveIndex);
// if (lowestScale < currSubsampling * 2.0f) {
// ExtractSiftOctave(*img, currBlur, peakThresh, lowestScale, currSubsampling, memoryTmp);
// if (octaveIndex > 0) {
// delete img;
// }
// }
// int w = img->width / 2;
// int h = img->height / 2;
// int p = iAlignUp(w, 128);
// // TODO: what happens if we have odd w or h?
// fprintf(stderr, "Making image\n");
// cuImage *subImg = new cuImage(w, h, memorySub, false);
// fprintf(stderr, "Scaling down image\n");
// ScaleDown(*subImg, *img, 0.5f);
// currBlur = (float)sqrt(currBlur * currBlur + 0.5f * 0.5f) / 2.0f;
// currSubsampling *= 2.0f;
// memorySub += h / 2 * p;
// img = subImg;
// }
// double totTime = timer.read();
// #ifdef VERBOSE
// printf("ExtractSift time total = %.2f ms\n\n", totTime);
// #endif
// }
// TODO: subsampling? lowest scale?
void SiftData::ExtractSiftLoop(cuImage &img, int numOctaves, double initBlur, float subsampling, float *memoryTmp, float *memorySub)
{
TimerGPU timer(0);
int w = img.width;
int h = img.height;
if (numOctaves > 1) {
cuImage *subImg = new cuImage(w / 2, h / 2, memorySub);
int p = iAlignUp(w / 2, 128);
ScaleDown(*subImg, img, 0.5f);
// TODO: Why alls this magicness
float totInitBlur = (float)sqrt(initBlur * initBlur + 0.5f * 0.5f) / 2.0f;
ExtractSiftLoop(*subImg, numOctaves - 1, totInitBlur, subsampling * 2.0f, memoryTmp, memorySub + (h / 2) * p);
delete subImg;
}
if (lowestScale<subsampling * 2.0f) {
ExtractSiftOctave(img, initBlur, subsampling, memoryTmp);
}
double totTime = timer.read();
#ifdef VERBOSE
printf("ExtractSift time total = %.2f ms\n\n", totTime);
#endif
}
void SiftData::ExtractSiftOctave(cuImage &img, double initBlur, float subsampling, float *memoryTmp)
{
// TODO: again, what is this?
const int nd = NUM_SCALES + 3;
TimerGPU timer0;
cuImage diffImg[nd];
int w = img.width;
int h = img.height;
int p = img.pitch;
for (int i = 0; i < nd - 1; i++) {
diffImg[i].Allocate(w, h, p, false, memoryTmp + i * p * h);
}
// Specify texture
struct cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypePitch2D;
resDesc.res.pitch2D.devPtr = img.d_data;
resDesc.res.pitch2D.width = img.width;
resDesc.res.pitch2D.height = img.height;
resDesc.res.pitch2D.pitchInBytes = img.pitch*sizeof(float);
resDesc.res.pitch2D.desc = cudaCreateChannelDesc<float>();
// Specify texture object parameters
struct cudaTextureDesc texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = cudaAddressModeClamp;
texDesc.addressMode[1] = cudaAddressModeClamp;
texDesc.filterMode = cudaFilterModeLinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 0;
// Create texture object
cudaTextureObject_t texObj = 0;
cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);
TimerGPU timer1;
float baseBlur = pow(2.0f, -1.0f/NUM_SCALES);
float diffScale = pow(2.0f, 1.0f/NUM_SCALES);
LaplaceMulti(texObj, diffImg, baseBlur, diffScale, initBlur);
int fstPts = 0;
safeCall(cudaMemcpyFromSymbol(&fstPts, d_PointCounter, sizeof(int)));
double sigma = baseBlur*diffScale;
// Pull out thresholds
FindPointsMulti(diffImg, sigma, 1.0f/NUM_SCALES, subsampling);
double gpuTimeDoG = timer1.read();
TimerGPU timer4;
int totPts = 0;
safeCall(cudaMemcpyFromSymbol(&totPts, d_PointCounter, sizeof(int)));
totPts = (totPts < this->maxPts ? totPts : this->maxPts);
if (totPts>fstPts) {
ComputeOrientations(texObj, fstPts, totPts);
safeCall(cudaMemcpyFromSymbol(&totPts, d_PointCounter, sizeof(int)));
totPts = (totPts < this->maxPts ? totPts : this->maxPts);
ExtractSiftDescriptors(texObj, fstPts, totPts, subsampling);
}
safeCall(cudaDestroyTextureObject(texObj));
double gpuTimeSift = timer4.read();
double totTime = timer0.read();
#ifdef VERBOSE
printf("GPU time : %.2f ms + %.2f ms + %.2f ms = %.2f ms\n", totTime-gpuTimeDoG-gpuTimeSift, gpuTimeDoG, gpuTimeSift, totTime);
safeCall(cudaMemcpyFromSymbol(&totPts, d_PointCounter, sizeof(int)));
totPts = (totPts < this->maxPts ? totPts : this->maxPts);
if (totPts>0)
printf(" %.2f ms / DoG, %.4f ms / Sift, #Sift = %d\n", gpuTimeDoG/NUM_SCALES, gpuTimeSift/(totPts-fstPts), totPts-fstPts);
#endif
}
// void InitSiftData(SiftData &data, int num, bool host, bool dev)
// {
// data.numPts = 0;
// data.maxPts = num;
// int sz = sizeof(SiftPoint)*num;
// #ifdef MANAGEDMEM
// safeCall(cudaMallocManaged((void **)&data.m_data, sz));
// #else
// data.h_data = NULL;
// if (host)
// data.h_data = (SiftPoint *)malloc(sz);
// data.d_data = NULL;
// if (dev)
// safeCall(cudaMalloc((void **)&data.d_data, sz));
// #endif
// }
// void FreeSiftData(SiftData &data)
// {
// #ifdef MANAGEDMEM
// safeCall(cudaFree(data.m_data));
// #else
// if (data.d_data!=NULL)
// safeCall(cudaFree(data.d_data));
// data.d_data = NULL;
// if (data.h_data!=NULL)
// free(data.h_data);
// data.h_data = NULL;
// #endif
// data.numPts = 0;
// data.maxPts = 0;
// }
///////////////////////////////////////////////////////////////////////////////
// Host side master functions
///////////////////////////////////////////////////////////////////////////////
// General strategy outlined here: http://docs.nvidia.com/cuda/samples/3_Imagi
// ng/convolutionSeparable/doc/convolutionSeparable.pdf
// TODO: convert to cuImage member function?
// TODO: investigate SCALEDOWN_W warps (160 x 16) -> chosen for apron size
double ScaleDown(cuImage &res, cuImage &src, float variance) {
// Make sure we have allocated device data for both source and resource
if (res.d_data == NULL || src.d_data == NULL) {
printf("ScaleDown: missing data\n");
return 0.0;
}
// 5-pixel linear gaussian kernel
float h_Kernel[5];
// Normalizing factor
float kernelSum = 0.0f;
// Compute kernel values. We only access n / 2 + 1 of the values in the CUDA
// kernel, but we compute all of the results so that we can normalize. We
// can do without computing the extra exp here as well, but maybe this was
// just easier?
for (int j = 0; j < 5; j++) {
h_Kernel[j] = (float)expf(-(double)(j - 2) * (j - 2) / 2.0 / variance);
kernelSum += h_Kernel[j];
}
// Normalize kernel values by kernelSum
for (int j = 0; j < 5; j++) {
h_Kernel[j] /= kernelSum;
}
// Pass kernel to device
safeCall(cudaMemcpyToSymbol(d_Kernel1, h_Kernel, 5 * sizeof(float)));
// Set number of blocks and threads; chosen for apron size (i.e., because we
// are doing convolution, we need to access memory outside a block; to make
// this efficient, we want to bring in data outside the block)
dim3 blocks(iDivUp(src.width, SCALEDOWN_W), iDivUp(src.height, SCALEDOWN_H));
dim3 threads(SCALEDOWN_W + 4);
// Start CUDA kernel
ScaleDown_D<<<blocks, threads>>>(res.d_data, src.d_data, src.width, src.pitch, src.height, res.pitch);
checkMsg("ScaleDown() execution failed\n");
return 0.0;
}
double SiftData::ComputeOrientations(cudaTextureObject_t texObj, int fstPts, int totPts) {
dim3 blocks(totPts - fstPts);
dim3 threads(128);
#ifdef MANAGEDMEM
ComputeOrientations_D<<<blocks, threads>>>(texObj, m_data, fstPts);
#else
ComputeOrientations_D<<<blocks, threads>>>(texObj, d_data, fstPts);
#endif
checkMsg("ComputeOrientations_D() execution failed\n");
return 0.0;
}
double SiftData::ExtractSiftDescriptors(cudaTextureObject_t texObj, int fstPts, int totPts, float subsampling) {
dim3 blocks(totPts - fstPts);
dim3 threads(16, 8);
#ifdef MANAGEDMEM
ExtractSiftDescriptors_D<<<blocks, threads>>>(texObj, m_data, fstPts, subsampling);
#else
ExtractSiftDescriptors_D<<<blocks, threads>>>(texObj, d_data, fstPts, subsampling);
#endif
checkMsg("ExtractSiftDescriptors_D() execution failed\n");
return 0.0;
}
// TODO: Really, we should reimplement the end of ExtractSiftDescriptors in
// cudaSiftD.cu so we don't do L2 normalization and then L1 normalization in
// the case of RootSift
double SiftData::ConvertSiftToRootSift() {
// For now, do naive parallelization. We are essentially creating a for loop
// over all the sift points
dim3 blocks(iDivUp(numPts, 16));
dim3 threads(16);
#ifdef MANAGEDMEM
ConvertSiftToRootSift_D<<<blocks, threads>>>(m_data, numPts);
#else
ConvertSiftToRootSift_D<<<blocks, threads>>>(d_data, numPts);
#endif
checkMsg("ConvertSiftToRootSift_D() execution failed\n");
return 0.0;
}
//==================== Multi-scale functions ===================//
double SiftData::LaplaceMulti(cudaTextureObject_t texObj, cuImage *results, float baseBlur, float diffScale, float initBlur) {
float kernel[12*16];
float scale = baseBlur;
for (int i=0;i<NUM_SCALES+3;i++) {
float kernelSum = 0.0f;
float var = scale*scale - initBlur*initBlur;
for (int j=-LAPLACE_R;j<=LAPLACE_R;j++) {
kernel[16*i+j+LAPLACE_R] = (float)expf(-(double)j*j/2.0/var);
kernelSum += kernel[16*i+j+LAPLACE_R];
}
for (int j=-LAPLACE_R;j<=LAPLACE_R;j++)
kernel[16*i+j+LAPLACE_R] /= kernelSum;
scale *= diffScale;
}
safeCall(cudaMemcpyToSymbol(d_Kernel2, kernel, 12*16*sizeof(float)));
int width = results[0].width;
int pitch = results[0].pitch;
int height = results[0].height;
dim3 blocks(iDivUp(width+2*LAPLACE_R, LAPLACE_W), height);
dim3 threads(LAPLACE_W+2*LAPLACE_R, LAPLACE_S);
LaplaceMulti_D<<<blocks, threads>>>(texObj, results[0].d_data, width, pitch, height);
checkMsg("LaplaceMulti_D() execution failed\n");
return 0.0;
}
double SiftData::FindPointsMulti(cuImage *sources, float scale, float factor, float subsampling) {
if (sources->d_data==NULL) {
printf("FindPointsMulti: missing data\n");
return 0.0;
}
int w = sources->width;
int p = sources->pitch;
int h = sources->height;
float threshs[2] = { peakThresh, -peakThresh };
float scales[NUM_SCALES];
float diffScale = pow(2.0f, factor);
for (int i=0;i<NUM_SCALES;i++) {
scales[i] = scale;
scale *= diffScale;
}
// TODO: rename d_Threshold, d_EdgeLimit?
safeCall(cudaMemcpyToSymbol(d_Threshold, &threshs, 2*sizeof(float)));
safeCall(cudaMemcpyToSymbol(d_EdgeLimit, &edgeThresh, sizeof(float)));
safeCall(cudaMemcpyToSymbol(d_Scales, scales, sizeof(float)*NUM_SCALES));
safeCall(cudaMemcpyToSymbol(d_Factor, &factor, sizeof(float)));
dim3 blocks(iDivUp(w, MINMAX_W)*NUM_SCALES, iDivUp(h, MINMAX_H));
dim3 threads(MINMAX_W + 2);
#ifdef MANAGEDMEM
FindPointsMulti_D<<<blocks, threads>>>(sources->d_data, m_data, w, p, h, NUM_SCALES, subsampling);
#else
FindPointsMulti_D<<<blocks, threads>>>(sources->d_data, d_data, w, p, h, NUM_SCALES, subsampling);
#endif
checkMsg("FindPointsMulti_D() execution failed\n");
return 0.0;
}