-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtest_lamb.py
124 lines (107 loc) · 5.08 KB
/
test_lamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""MNIST example.
Based on /~https://github.com/pytorch/examples/blob/master/mnist/main.py
"""
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from tensorboardX import SummaryWriter
from torchvision import datasets, transforms
from pytorch_lamb import Lamb, log_lamb_rs
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch, event_writer):
model.train()
tqdm_bar = tqdm.tqdm(train_loader)
for batch_idx, (data, target) in enumerate(tqdm_bar):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
step = batch_idx * len(data) + (epoch-1) * len(train_loader.dataset)
log_lamb_rs(optimizer, event_writer, step)
event_writer.add_scalar('loss', loss.item(), step)
tqdm_bar.set_description(
f'Train epoch {epoch} Loss: {loss.item():.6f}')
def test(args, model, device, test_loader, event_writer:SummaryWriter, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
acc = correct / len(test_loader.dataset)
event_writer.add_scalar('loss/test_loss', test_loss, epoch - 1)
event_writer.add_scalar('loss/test_acc', acc, epoch - 1)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * acc))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--optimizer', type=str, default='lamb', choices=['lamb', 'adam'],
help='which optimizer to use')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=6, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.0025, metavar='LR',
help='learning rate (default: 0.0025)')
parser.add_argument('--wd', type=float, default=0.01, metavar='WD',
help='weight decay (default: 0.01)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = Lamb(model.parameters(), lr=args.lr, weight_decay=args.wd, betas=(.9, .999), adam=(args.optimizer == 'adam'))
writer = SummaryWriter()
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, writer)
test(args, model, device, test_loader, writer, epoch)
if __name__ == '__main__':
main()