-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest.py
107 lines (93 loc) · 3.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# ================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Author : Clemente420
# Created date: 2019-11-14
#
# ================================================================
import cv2
import os
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from core.config import cfg
from core.yolov3 import YOLOv3, decode
INPUT_SIZE = 416
NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
predicted_dir_path = '../mAP/predicted'
ground_truth_dir_path = '../mAP/ground-truth'
if os.path.exists(predicted_dir_path):
shutil.rmtree(predicted_dir_path)
if os.path.exists(ground_truth_dir_path):
shutil.rmtree(ground_truth_dir_path)
if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH):
shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH)
os.mkdir(predicted_dir_path)
os.mkdir(ground_truth_dir_path)
os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH)
# Build Model
input_layer = tf.keras.layers.Input([INPUT_SIZE, INPUT_SIZE, 3])
feature_maps = YOLOv3(input_layer)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
model.load_weights("./yolov3")
with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file:
for num, line in enumerate(annotation_file):
annotation = line.strip().split()
image_path = annotation[0]
image_name = image_path.split('/')[-1]
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bbox_data_gt = np.array([list(map(int, box.split(',')))
for box in annotation[1:]])
if len(bbox_data_gt) == 0:
bboxes_gt = []
classes_gt = []
else:
bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
ground_truth_path = os.path.join(
ground_truth_dir_path, str(num) + '.txt')
print('=> ground truth of %s:' % image_name)
num_bbox_gt = len(bboxes_gt)
with open(ground_truth_path, 'w') as f:
for i in range(num_bbox_gt):
class_name = CLASSES[classes_gt[i]]
xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
bbox_mess = ' '.join(
[class_name, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())
print('=> predict result of %s:' % image_name)
predict_result_path = os.path.join(
predicted_dir_path, str(num) + '.txt')
# Predict Process
image_size = image.shape[:2]
image_data = utils.image_preporcess(
np.copy(image), [INPUT_SIZE, INPUT_SIZE])
image_data = image_data[np.newaxis, ...].astype(np.float32)
pred_bbox = model.predict(image_data)
pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox]
pred_bbox = tf.concat(pred_bbox, axis=0)
bboxes = utils.postprocess_boxes(
pred_bbox, image_size, INPUT_SIZE, cfg.TEST.SCORE_THRESHOLD)
bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms')
if cfg.TEST.DECTECTED_IMAGE_PATH is not None:
image = utils.draw_bbox(image, bboxes)
cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH+image_name, image)
with open(predict_result_path, 'w') as f:
for bbox in bboxes:
coor = np.array(bbox[:4], dtype=np.int32)
score = bbox[4]
class_ind = int(bbox[5])
class_name = CLASSES[class_ind]
score = '%.4f' % score
xmin, ymin, xmax, ymax = list(map(str, coor))
bbox_mess = ' '.join(
[class_name, score, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())