-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_cold_vel_disp.py
49 lines (38 loc) · 1.8 KB
/
save_cold_vel_disp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import yt
import numpy as np
yt.enable_parallelism()
datasets = yt.load("DD????/DD????")
storage = {}
for my_storage, ds in datasets.piter(dynamic=False, storage=storage):
streams = ds.cut_region(ds.all_data(), ["(obj['radial_velocity']).in_units('km/s') < 100"])
cold = streams.include_below("temperature", 1e4)
slc = yt.SlicePlot(ds, 'x', 'radial_velocity', width=(300,'kpc'), data_source=cold)
slc.set_log('radial_velocity', False)
slc.set_unit('radial_velocity', 'km/s')
slc.set_zlim('radial_velocity',-60, 60)
slc.set_cmap('radial_velocity', 'seismic')
slc.save()
var_x, mean_x = cold.quantities.weighted_variance('velocity_x', weight='cell_mass').in_units('km/s')
var_y, mean_y = cold.quantities.weighted_variance('velocity_y', weight='cell_mass').in_units('km/s')
var_z, mean_z = cold.quantities.weighted_variance('velocity_z', weight='cell_mass').in_units('km/s')
vel_disp = var_x+var_y+var_z
var_r, mean_r = cold.quantities.weighted_variance('radial_velocity', weight='cell_mass').in_units('km/s')
data = {}
data['vel_disp_3D'] = vel_disp
data['vel_disp_radial'] = var_r
data['mean_x'] = mean_x
data['mean_y'] = mean_y
data['mean_z'] = mean_z
data['mean_r'] = mean_r
my_storage.result = data
my_storage.result_id = int(ds.basename[-4:])
if yt.is_root():
data_arr = np.zeros((len(storage), 6))
for ds_name, dic in storage.items():
data_arr[ds_name, 0] = dic['vel_disp_3D']
data_arr[ds_name, 0] = dic['vel_disp_r']
data_arr[ds_name, 0] = dic['mean_x']
data_arr[ds_name, 0] = dic['mean_y']
data_arr[ds_name, 0] = dic['mean_y']
data_arr[ds_name, 0] = dic['mean_y']
np.savetxt("cold_gas_vel_disp.txt", data_arr, header="Disp3D DispR MeanX MeanY MeanZ MeanR")