-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_potts_model.py
executable file
·182 lines (141 loc) · 5.56 KB
/
run_potts_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from tape.datasets import pad_sequences, dataset_factory
import re
from scipy.spatial.distance import squareform, pdist
import numpy as np
import matplotlib.pylab as plt
import torch
import torch.nn.functional as F
import torch.nn.modules as modules
from torch.autograd import Variable
from torch import optim
import random
def parse_fasta(filename):
'''function to parse fasta file'''
header = []
sequence = []
lines = open(filename, "r")
for line in lines:
line = line.rstrip()
if line[0] == ">":
header.append(line[1:])
sequence.append([])
else:
sequence[-1].append(line)
lines.close()
sequence = [''.join(seq) for seq in sequence]
return np.array(header), np.array(sequence)
def filt_gaps(msa, states, gap_cutoff=0.5):
'''filters alignment to remove gappy positions'''
frac_gaps = np.mean((msa == states-1).astype(np.float),0)
non_gaps = np.where(frac_gaps < gap_cutoff)[0]
return msa[:,non_gaps], non_gaps
def get_eff(msa, eff_cutoff=0.8):
'''compute effective weight for each sequence'''
msa_sm = 1.0 - squareform(pdist(msa,"hamming"))
msa_w = (msa_sm >= eff_cutoff).astype(np.float)
msa_w = 1.0/np.sum(msa_w,-1)
return msa_w
def one_hot(msa,states):
one = np.eye(states)
return one[msa]
def mk_msa(seqs, max_num=16):
'''one hot encode msa'''
alphabet = "ARNDCQEGHILKMFPSTWYV-"
states = len(alphabet)
a2n = {}
for a,n in zip(alphabet,range(states)):
a2n[a] = n
def aa2num(aa):
'''convert aa into num'''
if aa in a2n: return a2n[aa]
else: return a2n['-']
################
msa = []
length = len(seqs[0])
for seq in seqs:
temp = [aa2num(aa) for aa in seq]
if len(temp)>=length:
temp = temp[:length]
else:
temp = temp + [a2n['-']]*(length-len(temp))
msa.append(temp)
msa = msa[:max_num]
msa_ori = np.array(msa)
#msa_ori, v_idx = filt_gaps(msa_ori, states)
return msa_ori, one_hot(msa_ori,states)
def get_mtx(W):
# l2norm of 20x20 matrices (note: we ignore gaps)
raw = np.sqrt(np.sum(np.square(W[:,:,:,:]),(1,3)))
np.fill_diagonal(raw,0)
# apc (average product correction)
ap = np.sum(raw,0,keepdims=True)*np.sum(raw,1,keepdims=True)/np.sum(raw)
apc = raw - ap
np.fill_diagonal(apc,0)
return(raw,apc)
if __name__ == '__main__':
data = dataset_factory('tape/data/proteinnet/proteinnet_test.lmdb', 'data')
precision = []
for i in range(len(data)):
correct = 0
total = 0
item = data[i]
contact_map = np.less(squareform(pdist(torch.tensor(item['tertiary']))), 8.0).astype(np.int64)
origin_contact_map = contact_map.copy()
yind, xind = np.indices(contact_map.shape)
valid_mask = item['valid_mask']
invalid_mask = ~(valid_mask[:, None] & valid_mask[None, :])
invalid_mask |= np.abs(yind - xind) < 6
contact_map[invalid_mask] = -1
#print(contact_map)
msa_file = 'tape/msa/proteinnet/proteinnet_test/{}.a3m'.format(i)
names,seqs = parse_fasta(msa_file)
msa_ori, msa = mk_msa(seqs)
# collecting some information about input msa
nrow = msa.shape[0] # number of sequences
ncol = msa.shape[1] # length of sequence
states = msa.shape[2] # number of states (or categories)
#enviroment setting
device = torch.device("cpu") # Uncomment this to run on GPU
MSA_0 = torch.from_numpy(msa.astype(np.float32))
MSA = torch.reshape(MSA_0,(-1,ncol*states))
W0 = Variable(torch.zeros(ncol*states,ncol*states), requires_grad=True)
MASK = (1.0 - torch.eye(ncol)[:,None,:,None]) * torch.ones((states,states))[None,:,None,:]
MASK = MASK.reshape((ncol*states,ncol*states))
b = Variable(torch.zeros(ncol*states), requires_grad=True)
learning_rate = 5e-4
for t in range(100):
W = (W0 + W0.transpose(1,0))/2 * MASK
MSA_pred = MSA.mm(W) + b
MSA_pred = torch.reshape(MSA_pred,(-1,ncol,states))
loss = torch.sum(- MSA_0 * F.log_softmax(MSA_pred, -1))
reg_b = 0.01 * (b*b).sum()
reg_w = 0.01 * 0.5 * states * ncol * (W*W).sum()
loss = loss + reg_b + reg_w
loss.backward()
if (t) % (int(100/10)) == 0:
print(t, loss.item())
# update the gradient
with torch.no_grad():
W0 -= learning_rate * W0.grad
b -= learning_rate * b.grad
# Manually zero the gradients after updating weights
W0.grad.zero_()
w = torch.Tensor.cpu(W).detach().numpy()
w = np.reshape(w,(ncol,states,ncol,states))
raw, apc = get_mtx(w)
raw, apc = get_mtx(w)
# positive = (origin_contact_map == 1).sum()
# negative = (origin_contact_map == 0).sum()
# per = positive/(positive+negative)
output = torch.tensor(raw)
contact_map = torch.tensor(contact_map)
valid_mask = (contact_map != -1)
output = output * valid_mask
most_likely = output.topk(ncol // 5, sorted=False)
selected = contact_map.gather(0, most_likely.indices)
correct += (selected>=0).sum().float()
total += (selected>=0).numel()
precision.append(float(correct/total))
print(str(i)+"th protein precision l5 is {}".format(correct/total))
print(np.array(precision).mean())
# compute the precision at l/5