forked from phbradley/tcr-dist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_read_nextgen_matches.py
818 lines (703 loc) · 29.8 KB
/
read_read_nextgen_matches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
#from phil import *
from basic import *
import matplotlib
import numpy as np
import tcr_sampler
import tcr_rearrangement_new
#import cdr3_properties
from scipy.stats import poisson
import sys
import util
from amino_acids import amino_acids
from all_genes import all_genes
with Parser(locals()) as p:
#p.str('args').unspecified_default().multiple().required()
p.str('logfile').required()
p.str('organism').required()
p.str('chain').required().described_as("Either 'A' or 'B'")
p.str('outfile')
#p.int('min_v_score').default(10)
#p.int('min_j_score').default(8)
p.int('min_count').default(100)
p.int('max_lines')
p.int('subsample_lines')
p.int('default_xmax').default(15)
#p.int('int_arg').shorthand('i')
#p.float('float_arg') # --float_arg 9.6
p.int('max_v_trim').default(20)
p.int('max_j_trim').default(20)
p.int('max_vj_insert').default(35)
p.int('min_d_nucs_for_imotifs').default(5)
p.int('imotif_len').default(6)
p.flag('check_nucseqs') # --flag_arg (no argument passed)
p.flag('skip_raw_data') # --flag_arg (no argument passed)
p.flag('gene_frequencies') # --flag_arg (no argument passed)
p.flag('hacking') # --flag_arg (no argument passed)
#p.flag('force_good_did') # --flag_arg (no argument passed)
p.flag('allow_repeats') # --flag_arg (no argument passed)
p.flag('uniq_by_nucseq') # --flag_arg (no argument passed)
p.flag('uniq_by_nucseq_and_tsv_file') # --flag_arg (no argument passed)
p.flag('show_poisson') # --flag_arg (no argument passed)
p.flag('dump_probs') # --flag_arg (no argument passed)
p.flag('make_png') # --flag_arg (no argument passed)
p.flag('imotifs') # --flag_arg (no argument passed)
force_good_did = True
if dump_probs:
gene_frequencies= True
if make_png: matplotlib.use('Agg')
import matplotlib.pyplot as plt
if hacking:
for mu in [0.1,0.5,1,2,4]:
rv = poisson(mu)
mean, var, skew, kurt = rv.stats(moments='mvsk')
print mu,'mean, var, skew, kurt:',mean, var, skew, kurt
xvals = np.arange(25)
#xvals = np.arange(rv.ppf(0.01), rv.ppf(0.99 ))
yvals = rv.pmf(xvals)
plt.plot( xvals, yvals, label=`mu` )
plt.legend()
plt.show()
exit()
possible_d_ids = tcr_rearrangement_new.all_trbd_nucseq[organism].keys()
num_d_ids = len(possible_d_ids)
bases = 'acgt'
all_new_nucseqs = {}
if imotifs:
if chain == 'A':
fake_did = 1
all_new_nucseqs = {fake_did:[]}
else:
for did in range(1,num_d_ids+1):
all_new_nucseqs[did] = []
v_data = {}
j_data = {}
vj_pairs = {}
all_nucseqs = {}
germline_nucseq = {}
gene_counts = {}
rep_counts = {}
countrep_counts = {}
u_gene_counts = {}
u_rep_counts = {}
gene_frequencies_total = 0
all_cdr3s = []
v_gene_list = []
v_rep_list = []
v_countrep_list = []
j_gene_list = []
j_rep_list = []
j_countrep_list = []
seen = {}
ncols = 0
dats_names = []
counter=0
num_bad = 0
num_bad_d = 0
numlines = 0
for line in open( logfile,'r'):
if not line.startswith('GENES '): continue
numlines += 1
if subsample_lines and numlines%subsample_lines: continue
counter += 1
if counter%100000==0:
Log('numlines: %d num_uniqs: %d num_bad_D: %d num_bad: %d'\
%(counter,len(seen.keys()),num_bad_d,num_bad))
l = line.split()
if chain == 'A':
expected_line_length = 21
else:
expected_line_length = 16 + 10 * num_d_ids ## 36 (mouse) or 46 (human) for example
if len(l) != expected_line_length:
Log('bad line: len= {} line= {}'.format(len(l),line))
continue
if max_lines and counter>max_lines: break
line_info = l[-1].split(':')
assert len(line_info)==3
tsv_file = line_info[1]
cdr3_protseq = l[7]
cdr3_new_nucseq = l[12]
cdr3_protseq_masked = l[13]
cdr3_nucseq = l[-2]
if uniq_by_nucseq:
uniqer = cdr3_nucseq
elif uniq_by_nucseq_and_tsv_file:
uniqer = (cdr3_nucseq,tsv_file)
else:
uniqer = cdr3_protseq + cdr3_new_nucseq + cdr3_protseq_masked
if (not allow_repeats) and uniqer in seen: continue
badseq = False
for a in cdr3_protseq:
if a not in amino_acids:
badseq = True
if badseq:
print 'skip bad cdr3_protseq:',cdr3_protseq
continue
seen[ uniqer ] = seen.get(uniqer,0) + 1
v_gene = l[1]
v_rep = l[2]
j_gene = l[4]
j_rep = l[5]
assert chain == all_genes[organism][v_gene].chain
jno = 0 # no filtering for D/J compatibility
if chain == 'B' and j_gene[2] == 'B':
jno = int(j_rep[4])
assert jno in [1,2]
all_v_genes = l[-4].split(',')
all_j_genes = l[-3].split(',')
assert v_gene in all_v_genes
assert j_gene in all_j_genes
if chain == 'A':
v_trim = -1*int(l[14])
j_trim = -1*int(l[15])
vj_insert = int(l[16])
dats = ( v_trim,j_trim,vj_insert,v_trim+j_trim,vj_insert)
dats = ( dats, )
if not dats_names:
dats_names = ( 'v_trim','j_trim','vj_insert',
'tot_trim',
'tot_insert' )
assert len(dats[0]) == len(dats_names)
all_new_nucseqs[ fake_did ].append( cdr3_new_nucseq )
else:
assert chain == 'B'
assert l[14][0] == 'D' and l[24][0] == 'D'
if l[14] == 'D0': continue ## bad if best d is 0
line_dats = []
#all_num_d_nucs = [ int(l[15+10*x]) for x in range(num_d_ids) ]
all_num_d_nucs = []
for r in range(num_d_ids):
start = 14+10*r
assert l[start][0] == 'D'
d_id = int(l[start][1])
if not d_id: continue ## trims not well defined...
if force_good_did:
if organism=='mouse' and jno == 1 and d_id == 2: continue ## hardly ever see this pairing
if organism=='human' and jno == 1 and d_id >= 2: continue ## ditto
num_d_nucs,v_trim,d0_trim,d1_trim,j_trim,vd_insert,dj_insert = map(int,l[start+1:start+8])
v_trim,d0_trim,d1_trim,j_trim = [-1*x for x in (v_trim,d0_trim,d1_trim,j_trim)]
all_num_d_nucs.append( num_d_nucs )
line_dats.append( ( v_trim, d0_trim, d1_trim, j_trim, vd_insert, dj_insert,
v_trim+d0_trim+d1_trim+j_trim,
vd_insert+dj_insert,
d0_trim+d1_trim,
d_id ) )
# if vd_insert + dj_insert>max_vj_insert:
# print 'too long:',vd_insert + dj_insert, max_vj_insert
if len(line_dats) == 0:
#Log('bad D id '+line)
num_bad_d += 1
continue
elif dump_probs and len(all_num_d_nucs)>=2 and all_num_d_nucs[0] == all_num_d_nucs[1]:
if len(all_num_d_nucs)>=3 and all_num_d_nucs[1] == all_num_d_nucs[2]:
dats = ( line_dats[0], line_dats[1], line_dats[2] )
else:
dats = ( line_dats[0], line_dats[1] )
else:
dats = ( line_dats[0], )
if not dats_names:
dats_names = ( 'v_trim','d0_trim','d1_trim','j_trim','vd_insert','dj_insert',
'tot_trim',
'tot_insert',
'tot_d_trim',
'd_id')
assert len(dats[0]) == len(dats_names)
if all_num_d_nucs[0] >= min_d_nucs_for_imotifs:
did = line_dats[0][-1]
all_new_nucseqs[did].append( cdr3_new_nucseq )
if v_rep not in v_data: v_data[v_rep] = []
if j_rep not in j_data: j_data[j_rep] = []
v_data[v_rep].append( dats )
j_data[j_rep].append( dats )
vj = (v_rep,j_rep)
vj_pairs[vj] = vj_pairs.get(vj,0)+1
all_cdr3s.append( cdr3_protseq )
if gene_frequencies:
gene_frequencies_total += 1
all_v_reps = set( [ all_genes[organism][x].rep for x in all_v_genes ] )
all_j_reps = set( [ all_genes[organism][x].rep for x in all_j_genes ] )
all_v_countreps = set( [ util.get_mm1_rep_gene_for_counting(x,organism) for x in all_v_genes ] )
all_j_countreps = set( [ util.get_mm1_rep_gene_for_counting(x,organism) for x in all_j_genes ] )
for gene in all_v_genes:
gene_counts[gene] = gene_counts.get(gene,0)+1
if gene not in v_gene_list: v_gene_list.append( gene )
for gene in all_j_genes:
gene_counts[gene] = gene_counts.get(gene,0)+1
if gene not in j_gene_list: j_gene_list.append( gene )
for rep in all_v_reps:
rep_counts[rep] = rep_counts.get(rep,0)+1
if rep not in v_rep_list: v_rep_list.append( rep )
for rep in all_j_reps:
rep_counts[rep] = rep_counts.get(rep,0)+1
if rep not in j_rep_list: j_rep_list.append( rep )
for countrep in all_v_countreps:
countrep_counts[countrep] = countrep_counts.get(countrep,0)+1
if countrep not in v_countrep_list: v_countrep_list.append( countrep )
for countrep in all_j_countreps:
countrep_counts[countrep] = countrep_counts.get(countrep,0)+1
if countrep not in j_countrep_list: j_countrep_list.append( countrep )
if len(all_v_genes)==1: u_gene_counts[v_gene] = u_gene_counts.get(v_gene,0)+1
if len(all_v_reps )==1: u_rep_counts[v_rep ] = u_rep_counts.get(v_rep ,0)+1
if len(all_j_genes)==1: u_gene_counts[j_gene] = u_gene_counts.get(j_gene,0)+1
if len(all_j_reps )==1: u_rep_counts[j_rep ] = u_rep_counts.get(j_rep ,0)+1
#print len(all_v_genes), len(all_v_reps), len(all_j_genes), len(all_j_reps)
if check_nucseqs:
nucseq = l[-2] ## actually cdr3_nucseq
for gene in all_v_genes:
if gene not in germline_nucseq:
germline_nucseq[gene] = tcr_sampler.get_v_cdr3_nucseq( organism, gene, paranoid = True )
for gene in all_j_genes:
if gene not in germline_nucseq:
germline_nucseq[gene] = tcr_sampler.get_j_cdr3_nucseq( organism, gene, paranoid = True )
v_nucseqs = set( [germline_nucseq[x] for x in all_v_genes] )
j_nucseqs = set( [germline_nucseq[x] for x in all_j_genes] )
if len(v_nucseqs) == 1:
if v_gene not in all_nucseqs:
all_nucseqs[v_gene] = []
minlen = len(germline_nucseq[v_gene] )
if len(nucseq) >= minlen:
all_nucseqs[v_gene].append( nucseq[:minlen] )
if len(j_nucseqs) == 1:
if j_gene not in all_nucseqs:
all_nucseqs[j_gene] = []
minlen = len(germline_nucseq[j_gene] )
if len(nucseq) >= minlen:
all_nucseqs[j_gene].append( nucseq[-1*minlen:] )
if imotifs: ## look for motifs in the insertion sequences
def shuffle_seq( seq ):
iseq = list(seq.replace('+',''))
random.shuffle(iseq)
rseq = []
iseq_pos=0
for a in seq:
if a== '+':
rseq.append(a)
else:
rseq.append( iseq[ iseq_pos ] )
iseq_pos +=1
assert iseq_pos == len(iseq)
return ''.join( rseq )
from collections import Counter
mlen = imotif_len
for did in all_new_nucseqs:
if chain == 'A':
dseq = '-'
dseq_maxlen = 1
else:
dseq_maxlen = max( len(x) for x in tcr_rearrangement_new.all_trbd_nucseq[organism].values() )
dseq = tcr_rearrangement_new.all_trbd_nucseq[organism][did]
word_counts = Counter()
rword_counts = Counter()
for real_seq in all_new_nucseqs[did]:
rand_seq = shuffle_seq(real_seq)
#print 'rand_seq:',real_seq,rand_seq
for seq,counts in [(real_seq,word_counts), (rand_seq,rword_counts)]:
L = len(seq)
for pos in range(L-mlen+1):
word = seq[pos:pos+mlen]
if '+' in word: continue
counts[word] += 1
for tag, counts in [('real',word_counts),('rand',rword_counts)]:
print '{:{}s} {}'.format( dseq, dseq_maxlen, tag ),
for word,count in counts.most_common(10):
print word,count,
print
exit()
def get_style_and_color( counter ):
"""
'-' solid line style
'--' dashed line style
'-.' dash-dot line style
':' dotted line style
'.' point marker
',' pixel marker
'o' circle marker
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
's' square marker
'p' pentagon marker
'*' star marker
'h' hexagon1 marker
'H' hexagon2 marker
'+' plus marker
'x' x marker
'D' diamond marker
'd' thin_diamond marker
'|' vline marker
'_' hline marker
"""
colors = 'rgbcmyk'
styles = ['-','--','-.',':','-o','.','o','v','<','>']
c = colors[ counter%(len(colors)) ]
s = styles[ (counter/(len(colors)))%(len(styles)) ]
return s+c
if dump_probs:
## 01/11/17 adding v2 to reflect countrep counts and timestamp
if not outfile:
uniqtag = 'ar' if allow_repeats else 'ubn' if uniq_by_nucseq else 'ubntsv' if uniq_by_nucseq_and_tsv_file else \
'ubcdr3'
outfile = '{}.N{}.U{}.max+{}-{}-{}.{}.{}{}v2_dump_probs'\
.format( logfile.split('/')[-1],
counter,
len(seen.keys()),
max_vj_insert,
max_v_trim,
max_j_trim,
uniqtag,
'ssl{}.'.format(subsample_lines) if subsample_lines else '',
'fgdid.' if force_good_did else '' )
print 'making',outfile
out = open( outfile,'w')
out.write('#CMD: {}\n'.format( ' '.join( sys.argv ) ) )
if gene_frequencies:
# if allow_repeats:
# total = float( sum( seen.values() ) )
# else:
# total = float( len(seen.keys())) ## for the possibly non-unique counts
total = float( gene_frequencies_total )
u_v_gene_total = float( sum( [u_gene_counts.get(x,0) for x in v_gene_list ] ))
u_j_gene_total = float( sum( [u_gene_counts.get(x,0) for x in j_gene_list ] ))
u_v_rep_total = float( sum( [ u_rep_counts.get(x,0) for x in v_rep_list ] ))
u_j_rep_total = float( sum( [ u_rep_counts.get(x,0) for x in j_rep_list ] ))
for rep in v_rep_list:
freq = rep_counts.get(rep,0) / total
u_freq = u_rep_counts.get(rep,0) / u_v_rep_total
out.write( '%sV_REP_FREQ: %9.3f %9.3f %s\n'%( chain, 100*freq, 100*u_freq,rep))
for rep in j_rep_list:
freq = rep_counts.get(rep,0) / total
u_freq = u_rep_counts.get(rep,0) / u_j_rep_total
out.write( '%sJ_REP_FREQ: %9.3f %9.3f %s\n'%( chain, 100*freq, 100*u_freq,rep))
totalfreq=0.
for countrep in v_countrep_list:
freq = countrep_counts.get(countrep,0) / total
out.write( '%sV_COUNTREP_FREQ: %9.3f %s\n'%( chain, 100*freq, countrep))
totalfreq+=freq
out.write( '%sV_COUNTREP_TOTALFREQ: %9.3f\n'%( chain, 100*totalfreq))
totalfreq=0.
for countrep in j_countrep_list:
freq = countrep_counts.get(countrep,0) / total
out.write( '%sJ_COUNTREP_FREQ: %9.3f %s\n'%( chain, 100*freq, countrep))
totalfreq+=freq
out.write( '%sJ_COUNTREP_TOTALFREQ: %9.3f\n'%( chain, 100*totalfreq))
for gene in v_gene_list:
freq = gene_counts.get(gene,0) / total
u_freq = u_gene_counts.get(gene,0) / u_v_gene_total
out.write( '%sV_GENE_FREQ: %9.3f %9.3f %s\n'%( chain, 100*freq, 100*u_freq,gene))
for gene in j_gene_list:
freq = gene_counts.get(gene,0) / total
u_freq = u_gene_counts.get(gene,0) / u_j_gene_total
out.write( '%sJ_GENE_FREQ: %9.3f %9.3f %s\n'%( chain, 100*freq, 100*u_freq,gene))
if False: # don't have cdr3_properties file in the new repository yet...
## compute some CDR3 distributions
for prop in cdr3_properties.cdr3_properties:
vals = [ cdr3_properties.get_cdr3_fval( prop, x ) for x in all_cdr3s ]
mn,sdev = get_mean_and_sdev( vals )
median = get_median( vals )
counts = {}
for val in vals:
ival = int( floor( 0.5+val) )
counts[ival] = counts.get(ival,0) + 1
## show distribution
total = float( len(vals ) )
dist = ' '.join( [ '{}: {:9.6f}'.format(x,counts.get(x,0)/total) for x in range( min(counts.keys()),
max(counts.keys())+1)])
out.write( 'cdr3_{}_distribution: N: {} mean: {:9.6f} sdev: {:9.6f} median: {:9.6f} distribution: {}\n'\
.format( prop, len(vals), mn, sdev, median, dist ) )
plt.figure(1,figsize=(14,14))
plt.suptitle('{}\n{}'.format( ' '.join(sys.argv), getcwd() ) )
assert max_vj_insert
assert max_v_trim
assert max_j_trim
numfigs = 1
if chain == 'B':
numfigs = 2
plt.figure(2,figsize=(23,14))
plt.suptitle('{}\n{}'.format( ' '.join(sys.argv), getcwd() ))
all_dats = {}
all_weights = {}
skip_count = {}
for did in possible_d_ids:
all_dats[did] = []
all_weights[did] = []
skip_count[did] = 0
for rep in v_data:
#print rep, len(v_data[rep])
for rdats in v_data[rep]:
assert len(rdats) in range(1,num_d_ids+1)
weight = 1.0/len(rdats)
for r in range(len(rdats)):
dats = rdats[r]
v_trim,d0_trim,d1_trim,j_trim,vd_insert,dj_insert,tot_trim,tot_insert,tot_d_trim,d_id = dats
if tot_insert <= max_vj_insert and v_trim<=max_v_trim and j_trim<=max_j_trim:
all_dats[d_id].append( ( v_trim, d0_trim, d1_trim, j_trim, tot_d_trim,
vd_insert, dj_insert, tot_insert ) )
all_weights[d_id].append( weight )
else:
skip_count[d_id] += 1
# print 'skip:',tot_insert,v_trim,j_trim
for did in possible_d_ids:
print 'd_id: {} num_dats: {} skip_fraction: {:.3f}%'\
.format( did, len(all_dats[did]), float( 100*skip_count[did] ) / ( skip_count[did] + len(all_dats[did])))
counter=-1
for d_id in sorted( all_dats.keys()):
## fit a 2d model of the d-trims
plt.figure(2)
plt.subplot(1,num_d_ids,d_id)
counts = {}
for d,wt in zip( all_dats[d_id], all_weights[d_id] ):
dd = (d[1],d[2])
counts[dd] = counts.get(dd,0)+wt
xvals = sorted(counts.keys())
total = float(sum(counts.values()))
probs = [ (counts[x]/total) for x in xvals]
label = 'PROB_{}_D{}_d01_trim'.format( chain, d_id )
outline = '{} {}'.format( label, ' '.join( [ '%d,%d: %9.6f'%(x[0],x[1],y) for x,y in zip(xvals,probs) ] ))
#print outline
out.write(outline+'\n')
dseq = tcr_rearrangement_new.all_trbd_nucseq[organism][d_id]
L = len(dseq)+1
A = np.zeros( ( L,L))
for i in range(L):
for j in range(L):
A[i][j] = float( counts.get((i,j),0))/total
A = A.transpose()
plt.imshow( A, origin = 'lower', interpolation='nearest' )#, cmap=plt.get_cmap('bwr'),vmin=vmin, vmax=vmax )
plt.xticks( range(L), range(L) )
plt.yticks( range(L), range(L) )
plt.title('D{} trims'.format(d_id))
#maxvals = [ max_v_trim, max_j_trim, max_vj_insert ]
plt.figure(1)
tags = [ 'v_trim', 'd0_trim','d1_trim', 'j_trim', 'tot_d_trim', 'vd_insert','dj_insert','tot_insert' ]
color_counter=-1
for ii,tag in enumerate(tags):
if 'd0' in tag or 'd1' in tag: continue
color_counter += 1
color = 'rgbcmky'[color_counter]
style = ['-','--',':','-.','-o','.','o','v','<','>'][ d_id-1 ]
counter+=1
counts = {}
for d,wt in zip( all_dats[d_id], all_weights[d_id] ):
counts[d[ii]] = counts.get( d[ii],0) + wt
xvals = sorted(counts.keys())
total = float(sum(counts.values()))
probs = [ (counts[x]/total) for x in xvals]
label = 'PROB_{}_D{}_{}'.format( chain, d_id, tag )
plt.plot( xvals,probs,style+color,label=label)
outline = '{} {}'.format( label, ' '.join( [ '%d: %9.6f'%(x,y) for x,y in zip(xvals,probs) ] ) )
#print outline
out.write(outline+'\n')
plt.legend()
elif chain == 'A':
assert chain == 'A'
all_dats = []
for rep in v_data:
for (( v_trim,j_trim,vj_insert,tot_trim,tot_insert),) in v_data[rep]:
if tot_insert <= max_vj_insert and v_trim<=max_v_trim and j_trim<=max_j_trim:
all_dats.append( ( v_trim, j_trim, vj_insert ) )
maxvals = [ max_v_trim, max_j_trim, max_vj_insert ]
tags = [ 'v_trim', 'j_trim', 'vj_insert' ]
for ii in range(3):
mx = maxvals[ii]
xvals = range(mx+1)
counts = dict( zip( xvals, [0]*(mx+1) ) )
for d in all_dats:
counts[d[ii]] += 1
total = float(sum(counts.values()))
probs = [ (counts[x]/total) for x in xvals]
label = 'PROB_{}_{}'.format( chain, tags[ii] )
plt.plot( xvals,probs,label=label)
outline = '{} {}'.format( label, ' '.join( [ '%9.6f'%x for x in probs ] ) )
#print outline
out.write(outline+'\n')
plt.legend()
out.close()
for fig in range(1,numfigs+1):
plt.figure(fig)
pngfile = '{}.F{}.png'.format(outfile,fig)
print 'making',pngfile
plt.savefig(pngfile)
if not make_png:
plt.show()
exit()
if check_nucseqs:
for vj in 'VJ':
for gene,nucseqs in all_nucseqs.iteritems():
if gene[3] != vj: continue
if not nucseqs: continue
rep = all_genes[organism][gene].rep
germline = germline_nucseq[gene]
L = len(germline)
pwm = {}
for i in range(L):
pwm[i] = dict(zip(bases,[0]*4))
if vj=='V':
start=L-1 ; direction = -1
else:
start = 0 ; direction = 1
for nucseq in nucseqs:
for i,a in enumerate(nucseq):
if a not in bases: continue
pwm[start+i*direction][a] += 1
warn = False
expected = []
consensus = []
for i in range(L):
expected_base = germline[start+i*direction]
total = float( sum( pwm[i].values() ) )
if not total:
print 'huh?',i,L,len(nucseqs)
continue
l = [ (pwm[i][x]/total,x) for x in bases]
l.sort()
l.reverse()
expected.append( expected_base )
consensus.append( l[0][1] )
if i>=2:
top_base = l[0][1]
if top_base!=expected_base or l[1][0]>0.35:
print 'whoah %2d act: %s %5.1f exp: %s %5.1f %s %s %d'\
%( i,l[0][1],100*l[0][0],expected_base,100*pwm[i][expected_base]/total,
gene,rep,
len(nucseqs) )
warn = True
if warn:
print 'whoah: expected: {} consensus: {} {} {}'\
.format( ''.join( expected ), ''.join( consensus ), gene,len(nucseqs))
exit()
v_repsl = [ ( len(v_data[x]),x) for x in v_data if len(v_data[x]) >= min_count ]
v_repsl.sort()
v_repsl.reverse()
j_repsl = [ ( len(j_data[x]),x) for x in j_data if len(j_data[x]) >= min_count ]
j_repsl.sort()
j_repsl.reverse()
v_reps = [ x[1] for x in v_repsl ]
j_reps = [ x[1] for x in j_repsl ]
#v_reps = sorted( [ x[1] for x in v_repsl ] )
#j_reps = sorted( [ x[1] for x in j_repsl ] )
big_total = sum( vj_pairs.values() )
if True:
plt.figure(1,figsize=(14,14))
A = np.zeros( ( len(v_reps), len(j_reps) ) )
for ii,v in enumerate( v_reps ):
p_v = float( len( v_data[v] ) ) / big_total
for jj,j in enumerate( j_reps ):
p_j = float( len( j_data[j] ) ) / big_total
expected = p_v * p_j * big_total
actual = vj_pairs.get((v,j),min( expected, 0.25 ) )## 0.25 pseudo count
enrich = math.log( actual/expected )
A[ii][jj] = enrich
A = A.transpose()
vmax = math.log(5)
vmin = -1*vmax
v_rep_names = [ '{} ({:.2f}%)'.format( x, (100.0*len(v_data[x]))/big_total ) for x in v_reps ]
j_rep_names = [ '{} ({:.2f}%)'.format( x, (100.0*len(j_data[x]))/big_total ) for x in j_reps ]
plt.imshow( A, origin = 'lower', interpolation='nearest', cmap=plt.get_cmap('bwr'),vmin=vmin, vmax=vmax )
plt.xticks( range(len(v_reps)), v_rep_names, rotation='vertical' )
plt.yticks( range(len(j_reps)), j_rep_names )
plt.suptitle('{}\n{}'.format( ' '.join(sys.argv), getcwd() ) )
pngfile = 'tmp.read_read_nextgen_matches.gene_correlations.{}.png'.format('_'.join(logfile.split('/')))
print 'making',pngfile
plt.savefig(pngfile)
if True:
ncols = len(dats_names)
plt.figure(2,figsize=(23,14))
all_all_dats = []
for counter,(v_rep_count,v_rep) in enumerate( v_repsl ):
all_dats = v_data[v_rep]
all_all_dats.extend( all_dats )
if skip_raw_data: continue
for i in range(ncols):
plt.subplot(2,ncols,i+1)
## histogram
vals = [x[0][i] for x in all_dats] ## each entry in all_dats is a tuple ( dats0, ) or (dats0,dats1) if tied
counts = {}
for x in vals:
counts[x] = counts.get(x,0)+1
total = sum(counts.values())
xmin=0
if chain == 'B' and 'tot' in dats_names[i]:
xmax = default_xmax+10
#legend_loc = 'upper left'
elif chain == 'B' and dats_names[i] == 'd_id':
xmin = 1
xmax = num_d_ids
legend_loc = 'lower center'
legend_loc = 'upper center'
else:
xmax = default_xmax
legend_loc = 'upper right'
xvals = range(xmin,xmax+1)
yvals = [ float( counts.get(x,0))/total for x in xvals]
plt.plot( xvals, yvals, get_style_and_color( counter ), label = '{} {}'.format(v_rep,v_rep_count))
if chain == 'B' and dats_names[i] == 'd_id':
plt.ylim((0,1.5))
plt.legend( loc=legend_loc, fontsize = 7 )
for counter,(j_rep_count,j_rep) in enumerate( j_repsl ):
all_dats = j_data[j_rep]
for i in range(ncols):
plt.subplot(2,ncols,i+ncols+1)
## histogram
vals = [x[0][i] for x in all_dats]
counts = {}
for x in vals:
counts[x] = counts.get(x,0)+1
total = sum(counts.values())
xmin=0
if chain == 'B' and 'tot' in dats_names[i]:
xmax = default_xmax+10
elif chain == 'B' and dats_names[i] == 'd_id':
xmin = 1
xmax = num_d_ids
legend_loc = 'upper center'
else:
xmax = default_xmax
legend_loc = 'upper right'
xvals = range(xmin,xmax+1)
yvals = [ float( counts.get(x,0))/total for x in xvals]
plt.plot( xvals, yvals, get_style_and_color( counter ), label = '{} {}'.format(j_rep,j_rep_count))
if chain == 'B' and dats_names[i] == 'd_id':
plt.ylim((0,1.5))
plt.legend( loc=legend_loc, fontsize = 7 )
plt.subplots_adjust( hspace=0.25, wspace = 0.22, left=0.02, right = 0.98, bottom=0.02, top=0.95 )
for i in range(ncols):
plt.subplot(2,ncols,i+1)
plt.title(dats_names[i])
plt.subplot(2,ncols,i+ncols+1)
plt.title(dats_names[i])
plt.suptitle('{}\n{}'.format( ' '.join(sys.argv), getcwd() ) )
pngfile = 'tmp.read_read_nextgen_matches.trims_and_inserts_by_gene.{}.png'.format('_'.join(logfile.split('/')))
print 'making',pngfile
plt.savefig(pngfile)
if not make_png:
plt.show()
# ## show poisson fits
# if show_poisson:
# for i in range(ncols):
# plt.subplot(2,ncols,i+1)
# ## histogram
# vals = [x[i] for x in all_all_dats]
# mean = sum(vals)/len(vals)
# counts = {}
# for x in vals:
# counts[x] = counts.get(x,0)+1
# total = sum(counts.values())
# if chain == 'B' and dats_names[i] == 'tot_trim':
# xmax = default_xmax+5
# legend_loc = 'upper left'
# elif chain == 'B' and dats_names[i] == 'd_id':
# xmax = 3
# else:
# xmax = default_xmax
# legend_loc = 'upper right'
# xvals = range(xmax)
# yvals = [ float( counts.get(x,0))/total for x in xvals]
# plt.plot( xvals, yvals, '-ok', label = 'all_data')
# rv = poisson(mean)
# yvals = rv.pmf(xvals)
# plt.plot( xvals, yvals, '-or', label = 'poisson' )
# plt.legend( loc=legend_loc, fontsize = 7 )