forked from phbradley/tcr-dist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_sharing.py
590 lines (433 loc) · 21 KB
/
plot_sharing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
from basic import *
import html_colors
import util
with Parser(locals()) as p:
p.str('clones_file').required()
p.str('organism').required()
p.str('outfile_prefix')
p.flag('show') # --flag_arg (no argument passed)
p.flag('paper_figs') # --flag_arg (no argument passed)
p.flag('include_gene_matching') # --flag_arg (no argument passed)
p.multiword('skip_epitopes').cast(lambda x:x.split())
p.multiword('epitopes').cast(lambda x:x.split())
logfile = clones_file[:-4]+'_sharing.log'
auc_logfile= clones_file[:-4]+'_random_aucs.log'
fake_chains = util.detect_fake_chains( clones_file )
if not exists( logfile ):
print 'Sorry, you need to run analyze_overlap_compute_simpsons.py before this script'
print 'If successful, it will generate',logfile
exit()
if not exists( auc_logfile ):
print 'Sorry, you need to run random_tcr_distances.py and read_random_tcr_distances.py before this script'
print 'If successful, they will generate',auc_logfile
exit()
cmdline_epitopes = epitopes
if not outfile_prefix:
outfile_prefix = logfile[:-4]
import matplotlib
if not show:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
#import numpy as np
assert exists(logfile)
epitope_diversity = {} ## store overall diversity measures
## order for the plots?
##
## first diversity: alpha, beta, alpha-beta
##
## then cross-reactivity:
##
##
plt.figure(1,figsize=(12,30))
nrows = 5
ncols = 1
if include_gene_matching:
colorkey = "(red=full-chain matching, green=gene-segment matching, blue=distance-threshold matching)"
else:
colorkey = "(red=standard, blue=distance-matching, green=TCRdiv)"
if True:
## let's plot simpsons diversity
all_dats = {}
all_mice_dats = {}
for line in open(logfile,'r'):
l = line.split()
if l[0] != 'clone_diversity:':continue
epitope = l[1]
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
div,divlo,divhi,p = [float(x) for x in l[2:6] ]
if divlo == 0 and divhi==0:
assert p==0
all_dats[epitope] = (div,divlo,divhi)
info_strings = [x.split(',') for x in l[-1].split(';')]
all_mice_dats[epitope] = [ (float(x[0]), int(x[1])) for x in info_strings ]
for r in range(1,3):
ax = plt.subplot(nrows,ncols,r) ## amino acid diversity
if r== 2:
ax.set_yscale( "log" )
ax.yaxis.grid(True,which='major')
counter=0
xvals = []
yvals = []
locs_labels = []
epitopes = all_dats.keys()
l = [ ( all_dats[x][0],x ) for x in epitopes ]
l.sort()
epitopes = [x[1] for x in l ] ## now sorted
#allyvals = []
for epitope in epitopes:
counter += 1
if r==1:
if all_dats[epitope][1] == 0:
div,divlo,divhi = 1.,1.,1.
else:
div,divlo,divhi = [(1.0-1.0/x) for x in all_dats[epitope] ]
else:
if all_dats[epitope][1]==0: continue
div,divlo,divhi = all_dats[epitope]
#allyvals.extend( all_dats[epitope] )
line_style = '-'
point_style = 'o'
color = 'r'
## a line from divlo to divhi
plt.plot( [counter,counter], [divlo,divhi], line_style, color = color )
plt.scatter( [counter], [div], marker=point_style, color = color )
locs_labels.append( ( counter, epitope ) )
if r==1:
if epitope in all_mice_dats:
yvals = []
xvals = []
for (p,total_tcrs_this_mouse) in all_mice_dats[epitope]:
yvals.append(1.0-p)
xvals.append(counter)
plt.text( counter, 1.0-p, ' {}'.format(total_tcrs_this_mouse), fontsize='xx-small',va='center' )
plt.scatter( xvals, yvals, marker='_', c='r' )
plt.ylim((-0.05,1.05))
plt.xticks( [x[0] for x in locs_labels], [x[1] for x in locs_labels], rotation='vertical', fontsize=10 )
plt.xlim((0,counter+1))
if r==1:
plt.title("1-simpson's diversity of clone-size distributions")
else:
plt.title("inverse simpson's diversity of clone-size distributions")
if True:
## let's plot simpsons diversity
all_dats = {}
for line in open(logfile,'r'):
l = line.split()
if l[0] != 'AA':continue
assert l[7] == 'div:'
aana = l[0]
comparison_mode = int( l[1][2] )
same_mouse = int( l[2][2] )
same_epitope = int( l[3][2] )
chains = l[6]
#ichains = all_chains.index(chains )
epitope,ep2 = l[4:6]
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
if comparison_mode==1 and not include_gene_matching: continue
if same_mouse or not same_epitope: continue
div,divlo,divhi = [float(x) for x in l[8:11] ]
if div==0:continue
if chains not in all_dats: all_dats[chains] = {}
if epitope not in all_dats[chains]: all_dats[chains][epitope] = {}
top3 = ','.join( line[ line.index('top3:')+5:-1].split())
if not top3: top3='-'
all_dats[chains][epitope][comparison_mode] = (div,divlo,divhi,top3)
## read the "green" data-- gaussian simpsons
for line in open(logfile,'r'):
l = line.split()
if l[0] != 'GAUSSDIV': continue
comparison_mode = 1 ## hack-- replace gene segment matching
same_mouse = int( l[1][2] )
same_epitope = int( l[2][2] )
chains = l[5]
#ichains = all_chains.index(chains )
epitope,ep2 = l[3:5]
div = float(l[7])
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
#if comparison_mode==1 and not include_gene_matching: continue
if not same_mouse or not same_epitope: continue
if chains not in all_dats: all_dats[chains] = {}
if epitope not in all_dats[chains]: all_dats[chains][epitope] = {}
all_dats[chains][epitope][comparison_mode] = (div,div,div,'')
## use this as a summary statistic for diversity
if chains not in epitope_diversity: epitope_diversity[chains] = {}
if epitope not in epitope_diversity[chains]: epitope_diversity[chains][epitope] = [0,0,0,0]
epitope_diversity[chains][epitope][0] = div
ax = plt.subplot(nrows,ncols,3) ## amino acid diversity
ax.set_yscale( "log" )
ax.yaxis.grid(True,which='major')
## what order to plot? increasing div at comparison_mode0 from left to right
counter=0
xvals = []
yvals = []
locs_labels = []
for chains in ['A','B','AB']:
counter += 1
if chains not in all_dats: continue
epitopes = all_dats[chains].keys()
comparison_mode_for_sorting = 1 ## identity based on gene segments
comparison_mode_for_sorting = 2 ## based on small distances
l = []
for epitope in epitopes:
if comparison_mode_for_sorting in all_dats[chains][epitope]:
sortval = all_dats[chains][epitope][comparison_mode_for_sorting][0]
else:
sortval = min( ( dats[0] for dats in all_dats[chains][epitope].values() ) )
l.append( ( sortval, epitope ) )
#l = [ ( all_dats[chains][x][comparison_mode_for_sorting][0],x ) for x in epitopes ]
l.sort()
epitopes = [x[1] for x in l ] ## now sorted
for epitope in epitopes:
counter += 1
for comparison_mode in [0,2,1]:
if comparison_mode not in all_dats[chains][epitope].keys(): continue
div,divlo,divhi,top3 = all_dats[chains][epitope][comparison_mode]
line_style = ['-','--',':'][ comparison_mode ]
point_style = ['o','s','D'][ comparison_mode ]
color = 'rgb'[ comparison_mode ]
## a line from divlo to divhi
if divlo<divhi: plt.plot( [counter,counter], [divlo,divhi], line_style, color = color )
plt.scatter( [counter], [div], marker=point_style, color = color )
locs_labels.append( ( counter, '{} ({})'.format(epitope,chains) ) )
plt.xticks( [x[0] for x in locs_labels], [x[1] for x in locs_labels], rotation='vertical', fontsize=10 )
plt.xlim((1,counter+1))
plt.title("inv-simpson's sharing-based repertoire diversity "+colorkey)
if True: ####################################################################### now plot sharing
for desired_same_mouse in [0,1]:
all_dats = {}
for line in open(logfile,'r'):
l = line.split()
if l[0] != 'AA':continue
assert l[7] == 'div:'
aana = l[0]
comparison_mode = int( l[1][2] )
same_mouse = int( l[2][2] )
same_epitope = int( l[3][2] )
chains = l[6]
#ichains = all_chains.index(chains )
ep1,ep2 = l[4:6]
if skip_epitopes and (ep1 in skip_epitopes or ep2 in skip_epitopes): continue
if cmdline_epitopes and (ep1 not in cmdline_epitopes or ep2 not in cmdline_epitopes): continue
if comparison_mode==1 and not include_gene_matching: continue
if same_epitope or ( same_mouse != desired_same_mouse ): continue
if chains not in all_dats: all_dats[chains] = {}
epitope = (ep1,ep2)
if float(l[8]) == 0:continue
div,divlo,divhi = [1.0/float(x) for x in l[8:11] ]
top3 = ','.join( line[ line.index('top3:')+5:-1].split())
if not top3: top3='-'
if epitope not in all_dats[chains]: all_dats[chains][epitope] = {}
all_dats[chains][epitope][comparison_mode] = (div,divlo,divhi,top3)
## read the "green" data-- gaussian simpsons
for line in open(logfile,'r'):
l = line.split()
if l[0] != 'GAUSSDIV': continue
comparison_mode = 1 ## hack-- replace gene segment matching
same_mouse = int( l[1][2] )
same_epitope = int( l[2][2] )
chains = l[5]
#ichains = all_chains.index(chains )
ep1,ep2 = l[3:5]
div = float(l[7])
if div==0:continue
div = 1.0/div
epitope=(ep1,ep2)
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
#if comparison_mode==1 and not include_gene_matching: continue
if same_epitope or same_mouse!=desired_same_mouse: continue
if chains not in all_dats: all_dats[chains] = {}
if epitope not in all_dats[chains]: all_dats[chains][epitope] = {}
all_dats[chains][epitope][comparison_mode] = (div,div,div,'')
ax = plt.subplot(nrows,ncols,4+desired_same_mouse) ## amino acid diversity
ax.set_yscale( "log" )
ax.yaxis.grid(True,which='major')
## what order to plot? increasing div at comparison_mode0 from left to right
counter=0
xvals = []
yvals = []
locs_labels = []
for chains in ['A','B','AB']:
counter += 1
if chains not in all_dats: continue
epitopes = [ x for x,y in all_dats[chains].iteritems() if y.keys() != [1] ]
#comparison_mode_for_sorting = 1 ## identity based on gene segments
comparison_mode_for_sorting = 2 ## based on small distances
l = []
for epitope in epitopes:
if comparison_mode_for_sorting in all_dats[chains][epitope]:
sortval = all_dats[chains][epitope][comparison_mode_for_sorting][0]
else:
sortval = min( ( dats[0] for dats in all_dats[chains][epitope].values() ) )
l.append( ( sortval, epitope ) )
l.sort()
l.reverse()
epitopes = [x[1] for x in l ] ## now sorted
for epitope in epitopes:
counter += 1
for comparison_mode in [0,2,1]:
if comparison_mode not in all_dats[chains][epitope].keys(): continue
div,divlo,divhi,top3 = all_dats[chains][epitope][comparison_mode]
line_style = ['-','--',':'][ comparison_mode ]
point_style = ['o','s','D'][ comparison_mode ]
color = 'rgb'[ comparison_mode ]
## a line from divlo to divhi
plt.plot( [counter,counter], [divlo,divhi], line_style, color = color )
plt.scatter( [counter], [div], marker=point_style, color = color )
locs_labels.append( ( counter, '{}-{} ({})'.format(epitope[0],epitope[1],chains) ) )
plt.xticks( [x[0] for x in locs_labels], [x[1] for x in locs_labels], rotation='vertical', fontsize=10 )
plt.xlim((1,counter+1))
if desired_same_mouse == 0:
plt.title("cross-reactive probability, different mice (same colors as above)")
else:
plt.title("cross-reactive probability, same mice (same colors as above)")
plt.subplots_adjust(bottom=0.1,top=0.97,left=0.05,right=0.97,hspace=0.3)
pngfile = '{}.png'.format(outfile_prefix)
print 'making:',pngfile
plt.savefig(pngfile)
util.readme(pngfile,"""These next five plots reflect different notions of sharing or repetition in the repertoire (ie, seeing "the same" TCR more than once).
The top two plots corresponds to repetition within a single mouse (ie, clonality), and give two representations of Simpson's measure: 1-Simpson's in the top
plot and 1/Simpson's in the bottom. The top plot shows 1-Simpson's for each of the individual mice (labeled by #reads in the mouse) together with an averaged value over
the entire repertoire (red disk, mice are weighted based on number of reads).
<br>
The middle plot uses the Simpson's diversity framework to analyze sharing across mice for the same epitope. The three colors correspond to three notions of
sharing: red points-- seeing the exact same TCR (alpha or beta or both chains); blue points-- seeing two TCRs within a (small) distance of one another; green points-- a
Gaussian-smoothed version of the blue points ("TCRdiv", see explanatory text for the very first figure on this page).
<br>
The bottom two plots look at cross-reactivity: sharing of TCRs between epitopes, either between different mice (plot#4) or within the same mouse (plot#5). The colors
are the same as in the middle plot.
""")
# util.make_readme( pngfile, """
# These four plots
# """ )
## read the other diversity summary statistic
for line in open(logfile,'r'):
if line.startswith('GAUSSDIVSHANNON'):
l = line.split()
epitope,chains = l[1:3]
shannon_diversity = float( l[4] )
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
epitope_diversity[chains][epitope][1] = shannon_diversity
elif line.startswith('avg_nbrdist:'):
l = line.split()
epitope,chains = l[1:3]
avg_nbrdist = float( l[3] )
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
epitope_diversity[chains][epitope][2] = avg_nbrdist
## load the random values for avg_nbrdist
rand_divs = {}
for chains in ['A','B','AB']: rand_divs[chains] = [[],[],[],[]]
randfile = '{}/{}_rand_divs_new.txt'.format(path_to_current_db_files(),organism)
if not exists(randfile):
Log('WARNING:: plot_sharing.py: missing random divergences file: {}'.format(randfile))
else:
for line in open(randfile,'r'):
l = line.split()
if line.startswith("GAUSSDIV SM1 SE1"):
chains = l[5]
div = float(l[7])
rand_divs[chains][0].append( div )
elif line.startswith("GAUSSDIVSHANNON"):
chains = l[2]
div = float( l[4] )
rand_divs[chains][1].append( div )
elif line.startswith('avg_nbrdist:'):
fake_epitope,chains = l[1:3]
avg_nbrdist = float( l[3] )
rand_divs[chains][2].append( avg_nbrdist )
## let's try to get epitope diversity information from the aucs for discrimination from random tcrs
desired_nbrdist_tag_suffix = 'wtd_nbrdist10'
desired_nbrdist_label = 'nbrdist10p'
for line in open( auc_logfile,'r'):
if line.startswith('auc_random '):
l = line.split()
auc = float( l[1] )
chains = l[4]
epitope = l[5]
nbrdist_tag_suffix = l[6]
if skip_epitopes and epitope in skip_epitopes: continue
if cmdline_epitopes and epitope not in cmdline_epitopes: continue
if nbrdist_tag_suffix == desired_nbrdist_tag_suffix:
epitope_diversity[chains][epitope][3] = -1*auc ## sort from least to most diverse
plt.figure(2,figsize=(12,12))
## now make a diversity summary bar-plot figure
nrows = 3 ## A,B,AB
#ncols = 3
ncols = 3
epitopes = epitope_diversity['A'].keys()
#epitopes.sort()
plotno=0
for chains in ['A','B','AB']:
if chains in fake_chains: continue
#for ( divindex, divtype ) in [ ( 0, 'inv_simpson_gaussdist' ), (1, 'shannon_gaussdist'), (2, 'avg_nbrdist') ]:
for ( divindex, divtype ) in [ ( 0, 'TCRdiv' ),
( 2, 'avg_nbrdist10p aka NN-distance'),
( 3, 'AUROC_random {}'.format(desired_nbrdist_label)) ]:
l = [ ( epitope_diversity[chains][x][divindex],x) for x in epitopes ]
l.sort()
if paper_figs:
for div,epitope in l:
print 'epitope_diversity:',chains,epitope,'_'.join(divtype.split()),div
plotno+=1
ax = plt.subplot(nrows,ncols,plotno )
if divindex<=1: ax.set_yscale( "log" )
ax.yaxis.grid(True,which='major')
if divindex==3: # special case
aucs = [-100*x[0] for x in l] ## now go from 0 to 100
heights = [x-100 for x in aucs]
bottoms = [100]*len(l)
lefts = range(len(l))
plt.bar( lefts, heights, bottom=bottoms )
else:
plt.bar( range(len(l)), [x[0] for x in l ] )
plt.xticks( [x+0.4 for x in range(len(l))], [x[1] for x in l ], rotation='vertical', fontsize=10 )
plt.title('{} {}'.format(chains, divtype))
rdivs = rand_divs[chains][divindex]
if rdivs:
rdivs.sort()
for val in rdivs:
plt.plot( [0,len(l)], [val,val], ':r' )
locs,labels = plt.yticks()
minval = min( ( x[0] for x in l ) )
maxval = max( ( x[0] for x in l ) )
ymn,ymx = plt.ylim()
if divindex==2: ## only makes sense for linear plot
locsep = locs[1]-locs[0]
max_lowerloc = max( ( x for x in locs if x < minval-0.5*locsep ) )
ymn = max( max_lowerloc, ymn )
if divindex<=1: ## trim off some randoms?
if max(locs) > maxval * 100:
min_upperloc = min( ( x for x in locs if x > maxval*10 ) )
ymx = min(ymx,min_upperloc)
##
if divindex==3:
ymn,ymx = ymx,ymn
plt.ylim( ymn,ymx)
plt.suptitle( 'repertoire diversity summary' )
plt.subplots_adjust(bottom=0.1,top=0.93,left=0.05,right=0.97,hspace=0.35)
pngfile = '{}_diversity.png'.format(outfile_prefix)
print 'making:',pngfile
plt.savefig(pngfile)
util.readme(pngfile,"""These bar plots represent three ways of looking at the total diversity of an epitope-specific
repertoire, measured over single-chains (top two rows) and full receptors (bottom row). The left column shows the TCRdiv
diversity measure (a variant of the (inverse of) Simpson's Diversity Index that accounts for receptor similarity
as well as identity). The middle column shows the average NNdistance aka nbrdistance over all the TCR clones in the
repertoire and captures the average distance from TCR clones to their nearest neighbors in the repertoire.
The right column is based on comparison between the epitope-specific TCRs and random TCRs, specifically
looking at the "AUROC" measure. AUROC measures the area under the ROC curve, and captures the trade-off between true and
false positives as the value of a quality or sorting metric is varied from best to worst. An AUROC of 100 (perfect
separation) means that all the true positives occur before any of the false positives. An AUROC of 50 (random)
means that the positives and negatives are equally distributed with respect to the sorting measure. The sort used here
is the "nbrdist10P" which measures the weighted average distance to the closest tenth of the reference repertoire.
The AUROCs
are plotted with a flipped y-axis for easy comparison to the other columns,
the idea being that a more diverse repertoire will be harder to reliably separate
from the random background and hence will have smaller AUROC values (ie, lower AUROC == higher diversity).
""")
if show:
plt.show()