forked from phbradley/tcr-dist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_genes.py
260 lines (222 loc) · 10.5 KB
/
all_genes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from basic import *
from amino_acids import amino_acids
from tcr_distances_blosum import blosum
from paths import path_to_db
import translation
cdrs_sep = ';'
gap_character = '.'
all_genes = {}
class TCR_Gene:
def __init__( self, l ):
self.id = l['id']
self.organism = l['organism']
self.chain = l['chain']
self.region = l['region']
self.nucseq = l['nucseq']
self.alseq = l['aligned_protseq']
self.cdrs = l['cdrs'].split(cdrs_sep) if l['cdrs'] else []
## these are still 1-indexed !!!!!!!!!!!!!!
self.cdr_columns = [ map( int,x.split('-')) for x in l['cdr_columns'].split(cdrs_sep) ] if self.cdrs else []
frame = l['frame']
assert frame in ['+1','+2','+3','1','2','3']
self.nucseq_offset = int( frame[-1] )-1 ## 0, 1 or 2 (0-indexed for python)
self.protseq = translation.get_translation( self.nucseq, frame )[0]
assert self.protseq == self.alseq.replace(gap_character,'')
# sanity check
if self.cdrs:
assert self.cdrs == [ self.alseq[ x[0]-1 : x[1] ] for x in self.cdr_columns ]
def trim_allele_to_gene( id ):
return id[: id.index('*') ] #will fail if id doesn't contain '*'
## need to make this a little more configurable (cmdline??)
db_file = path_to_db+'/'+pipeline_params['db_file']
assert exists(db_file)
lines = parse_tsv_file( db_file )
for l in lines:
g = TCR_Gene( l )
if g.organism not in all_genes:
all_genes[g.organism] = {} # map from id to TCR_Gene objects
all_genes[g.organism][g.id] = g
verbose = ( __name__ == '__main__' )
for organism,genes in all_genes.iteritems():
for ab in 'AB':
org_merged_loopseqs = {}
for id,g in genes.iteritems():
if g.chain == ab and g.region == 'V':
loopseqs = g.cdrs[:-1] ## exclude CDR3 Nterm
org_merged_loopseqs[id] = ' '.join( loopseqs )
all_loopseq_nbrs = {}
all_loopseq_nbrs_mm1 = {}
for id1,seq1 in org_merged_loopseqs.iteritems():
g1 = genes[id1]
cpos = g1.cdr_columns[-1][0] - 1 #0-indexed
alseq1 = g1.alseq
minlen = cpos+1
assert len(alseq1) >= minlen
if alseq1[cpos] != 'C' and verbose:
print 'funny cpos:',id1,alseq1,g1.cdrs[-1]
all_loopseq_nbrs[id1] = []
all_loopseq_nbrs_mm1[id1] = []
for id2,seq2 in org_merged_loopseqs.iteritems():
g2 = genes[id2]
alseq2 = g2.alseq
assert len(alseq2) >= minlen
assert len(seq1) == len(seq2)
if seq1 == seq2:
all_loopseq_nbrs[id1].append( id2 )
all_loopseq_nbrs_mm1[id1].append( id2 )
continue
## count mismatches between these two, maybe count as an "_mm1" nbr
loop_mismatches = 0
loop_mismatches_cdrx = 0
loop_mismatch_seqs =[]
spaces=0
for a,b in zip( seq1,seq2):
if a==' ':
spaces+=1
continue
if a!= b:
if a in '*.' or b in '*.':
loop_mismatches += 10
break
else:
assert a in amino_acids and b in amino_acids
if spaces<=1:
loop_mismatches += 1
loop_mismatch_seqs.append( ( a,b ) )
else:
assert spaces==2
loop_mismatches_cdrx += 1
if loop_mismatches>1:
break
if loop_mismatches <=1:
all_mismatches = 0
for a,b in zip( alseq1[:cpos+2],alseq2[:cpos+2]):
if a!= b:
if a in '*.' or b in '*.':
all_mismatches += 10
else:
assert a in amino_acids and b in amino_acids
all_mismatches += 1
#dist = tcr_distances.blosum_sequence_distance( seq1, seq2, gap_penalty=10 )
if loop_mismatches<=1 and loop_mismatches + loop_mismatches_cdrx <= 2 and all_mismatches<=10:
if loop_mismatches == 1:
blscore= blosum[(loop_mismatch_seqs[0][0],loop_mismatch_seqs[0][1])]
else:
blscore = 100
if blscore>=1:
all_loopseq_nbrs_mm1[id1].append( id2 )
if loop_mismatches>0 and verbose:
mmstring = ','.join(['%s/%s'%(x[0],x[1]) for x in loop_mismatch_seqs])
gene1 = trim_allele_to_gene( id1 )
gene2 = trim_allele_to_gene( id2 )
if gene1 != gene2 and verbose:
print 'v_mismatches:',organism,mmstring,blscore,id1,id2,\
loop_mismatches,loop_mismatches_cdrx,all_mismatches,seq1
print 'v_mismatches:',organism,mmstring,blscore,id1,id2,\
loop_mismatches,loop_mismatches_cdrx,all_mismatches,seq2
for id in all_loopseq_nbrs:
rep = min( all_loopseq_nbrs[id] )
assert org_merged_loopseqs[id] == org_merged_loopseqs[ rep ]
genes[id].rep = rep
if verbose:
print 'vrep %s %15s %15s %s'%(organism, id, rep, org_merged_loopseqs[id])
## merge mm1 nbrs to guarantee transitivity
while True:
new_nbrs = False
for id1 in all_loopseq_nbrs_mm1:
new_id1_nbrs = False
for id2 in all_loopseq_nbrs_mm1[id1]:
for id3 in all_loopseq_nbrs_mm1[id2]:
if id3 not in all_loopseq_nbrs_mm1[id1]:
all_loopseq_nbrs_mm1[id1].append( id3 )
if verbose:
print 'new_nbr:',id1,'<--->',id2,'<--->',id3
new_id1_nbrs = True
break
if new_id1_nbrs:
break
if new_id1_nbrs:
new_nbrs = True
if verbose:
print 'new_nbrs:',ab,organism,new_nbrs
if not new_nbrs:
break
for id in all_loopseq_nbrs_mm1:
rep = min( all_loopseq_nbrs_mm1[id] )
genes[id].mm1_rep = rep
if verbose:
print 'mm1vrep %s %15s %15s %s'%(organism, id, rep,org_merged_loopseqs[id])
## setup Jseq reps
for ab in 'AB':
jloopseqs = {}
for id,g in genes.iteritems():
if g.chain == ab and g.region == 'J':
num = len( g.cdrs[0].replace( gap_character, '' ) )
jloopseq = g.protseq[:num+3] ## go all the way up to and including the GXG
jloopseqs[id] = jloopseq
all_jloopseq_nbrs = {}
for id1,seq1 in jloopseqs.iteritems():
all_jloopseq_nbrs[id1] = []
for id2,seq2 in jloopseqs.iteritems():
if seq1 == seq2:
all_jloopseq_nbrs[id1].append( id2 )
for id in all_jloopseq_nbrs:
rep = min( all_jloopseq_nbrs[id] )
genes[id].rep = rep
genes[id].mm1_rep = rep # just so we have an mm1_rep field defined...
assert jloopseqs[id] == jloopseqs[ rep ]
if verbose:
print 'jrep %s %15s %15s %15s'%(organism, id, rep, jloopseqs[id])
## setup a mapping that we can use for counting when allowing mm1s and also ignoring alleles
# allele2mm1_rep_gene_for_counting = {}
# def get_mm1_rep_ignoring_allele( gene, organism ): # helper fxn
# rep = get_mm1_rep( gene, organism )
# rep = rep[:rep.index('*')]
# return rep
#allele2mm1_rep_gene_for_counting[ organism ] = {}
for chain in 'AB':
for vj in 'VJ':
allele_gs = [ (id,g) for (id,g) in all_genes[organism].iteritems() if g.chain==chain and g.region==vj]
gene2rep = {}
gene2alleles = {}
rep_gene2alleles = {}
for allele,g in allele_gs:
#assert allele[2] == chain
gene = trim_allele_to_gene( allele )
rep_gene = trim_allele_to_gene( g.mm1_rep )
if rep_gene not in rep_gene2alleles:
rep_gene2alleles[ rep_gene ] = []
rep_gene2alleles[ rep_gene ].append( allele )
if gene not in gene2rep:
gene2rep[gene] = set()
gene2alleles[gene] = []
gene2rep[ gene ].add( rep_gene )
gene2alleles[gene].append( allele )
merge_rep_genes = {}
for gene,reps in gene2rep.iteritems():
if len(reps)>1:
assert vj=='V'
if verbose:
print 'multireps:',organism, gene, reps
for allele in gene2alleles[gene]:
print ' '.join(all_genes[organism][allele].cdrs), allele, \
all_genes[organism][allele].rep, \
all_genes[organism][allele].mm1_rep
## we are going to merge these reps
## which one should we choose?
l = [ (len(rep_gene2alleles[rep]), rep ) for rep in reps ]
l.sort()
l.reverse()
assert l[0][0] > l[1][0]
toprep = l[0][1]
for (count,rep) in l:
if rep in merge_rep_genes:
assert rep == toprep and merge_rep_genes[rep] == rep
merge_rep_genes[ rep ] = toprep
for allele,g in allele_gs:
count_rep = trim_allele_to_gene( g.mm1_rep ) #get_mm1_rep_ignoring_allele( allele, organism )
if count_rep in merge_rep_genes:
count_rep = merge_rep_genes[ count_rep ]
g.count_rep = count_rep #allele2mm1_rep_gene_for_counting[ organism ][ allele] = count_rep
if verbose:
print 'countrep:',organism, allele, count_rep