-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlist-simplifier.agda
131 lines (106 loc) · 5 KB
/
list-simplifier.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
module list-simplifier where
open import level
open import bool
open import functions
open import eq
open import empty
open import level
open import list
open import list-thms
open import nat
open import neq
open import product
open import product-thms
data 𝕃ʳ : Set → Set lone where
_ʳ : {A : Set} → 𝕃 A → 𝕃ʳ A
_++ʳ_ : {A : Set} → 𝕃ʳ A → 𝕃ʳ A → 𝕃ʳ A
mapʳ : {A B : Set} → (A → B) → 𝕃ʳ A → 𝕃ʳ B
_::ʳ_ : {A : Set} → A → 𝕃ʳ A → 𝕃ʳ A
[]ʳ : {A : Set} → 𝕃ʳ A
𝕃⟦_⟧ : {A : Set} → 𝕃ʳ A → 𝕃 A
𝕃⟦ l ʳ ⟧ = l
𝕃⟦ t1 ++ʳ t2 ⟧ = 𝕃⟦ t1 ⟧ ++ 𝕃⟦ t2 ⟧
𝕃⟦ mapʳ f t ⟧ = map f 𝕃⟦ t ⟧
𝕃⟦ x ::ʳ t ⟧ = x :: 𝕃⟦ t ⟧
𝕃⟦ []ʳ ⟧ = []
is-emptyʳ : {A : Set} → 𝕃ʳ A → 𝔹
is-emptyʳ []ʳ = tt
is-emptyʳ _ = ff
is-emptyʳ-≡ : {A : Set}(t : 𝕃ʳ A) → is-emptyʳ t ≡ tt → t ≡ []ʳ
is-emptyʳ-≡ []ʳ p = refl
is-emptyʳ-≡ (_ ++ʳ _) ()
is-emptyʳ-≡ (mapʳ _ _) ()
is-emptyʳ-≡ (_ ::ʳ _) ()
is-emptyʳ-≡ (_ ʳ) ()
𝕃ʳ-simp-step : {A : Set}(t : 𝕃ʳ A) → 𝕃ʳ A
𝕃ʳ-simp-step ((t1a ++ʳ t1b) ++ʳ t2) = t1a ++ʳ (t1b ++ʳ t2)
𝕃ʳ-simp-step ((x ::ʳ t1) ++ʳ t2) = x ::ʳ (t1 ++ʳ t2)
𝕃ʳ-simp-step ([]ʳ ++ʳ t2) = t2
𝕃ʳ-simp-step ((l ʳ) ++ʳ t2) =
if is-emptyʳ t2 then l ʳ else ((l ʳ) ++ʳ t2)
𝕃ʳ-simp-step ((mapʳ f t1) ++ʳ t2) =
if is-emptyʳ t2 then mapʳ f t1 else ((mapʳ f t1) ++ʳ t2)
𝕃ʳ-simp-step (mapʳ f (t1 ++ʳ t2)) = (mapʳ f t1) ++ʳ (mapʳ f t2)
𝕃ʳ-simp-step (mapʳ f (l ʳ)) = (map f l) ʳ
𝕃ʳ-simp-step (mapʳ f (mapʳ g t)) = mapʳ (f ∘ g) t
𝕃ʳ-simp-step (mapʳ f (x ::ʳ t)) = (f x) ::ʳ (mapʳ f t)
𝕃ʳ-simp-step (mapʳ f []ʳ) = []ʳ
𝕃ʳ-simp-step (l ʳ) = l ʳ
𝕃ʳ-simp-step (x ::ʳ t) = (x ::ʳ t)
𝕃ʳ-simp-step []ʳ = []ʳ
𝕃ʳ-simp-sdev : {A : Set}(t : 𝕃ʳ A) → 𝕃ʳ A
𝕃ʳ-simp-sdev (l ʳ) = (l ʳ)
𝕃ʳ-simp-sdev (t1 ++ʳ t2) = 𝕃ʳ-simp-step ((𝕃ʳ-simp-sdev t1) ++ʳ (𝕃ʳ-simp-sdev t2))
𝕃ʳ-simp-sdev (mapʳ f t1) = 𝕃ʳ-simp-step (mapʳ f (𝕃ʳ-simp-sdev t1))
𝕃ʳ-simp-sdev (x ::ʳ t1) = 𝕃ʳ-simp-step (x ::ʳ (𝕃ʳ-simp-sdev t1))
𝕃ʳ-simp-sdev []ʳ = []ʳ
𝕃ʳ-simp : {A : Set}(t : 𝕃ʳ A) → ℕ → 𝕃ʳ A
𝕃ʳ-simp t 0 = t
𝕃ʳ-simp t (suc n) = 𝕃ʳ-simp-sdev (𝕃ʳ-simp t n)
𝕃ʳ-simp-step-sound : {A : Set}(t : 𝕃ʳ A) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp-step t ⟧
𝕃ʳ-simp-step-sound ((t1a ++ʳ t1b) ++ʳ t2) = ++-assoc 𝕃⟦ t1a ⟧ 𝕃⟦ t1b ⟧ 𝕃⟦ t2 ⟧
𝕃ʳ-simp-step-sound ((x ::ʳ t1) ++ʳ t2) = refl
𝕃ʳ-simp-step-sound ([]ʳ ++ʳ t2) = refl
𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) with keep (is-emptyʳ t2)
𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) | tt , p rewrite p | is-emptyʳ-≡ t2 p | ++[] l = refl
𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) | ff , p rewrite p = refl
𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) with keep (is-emptyʳ t2)
𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) | tt , p rewrite p | is-emptyʳ-≡ t2 p | ++[] (map f 𝕃⟦ t1 ⟧) = refl
𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) | ff , p rewrite p = refl
𝕃ʳ-simp-step-sound (l ʳ) = refl
𝕃ʳ-simp-step-sound (mapʳ f (t1 ++ʳ t2)) = map-append f 𝕃⟦ t1 ⟧ 𝕃⟦ t2 ⟧
𝕃ʳ-simp-step-sound (mapʳ f (l ʳ)) = refl
𝕃ʳ-simp-step-sound (mapʳ f (mapʳ g t)) = map-compose f g 𝕃⟦ t ⟧
𝕃ʳ-simp-step-sound (mapʳ f (x ::ʳ t)) = refl
𝕃ʳ-simp-step-sound (mapʳ f []ʳ) = refl
𝕃ʳ-simp-step-sound (x ::ʳ t) = refl
𝕃ʳ-simp-step-sound []ʳ = refl
𝕃ʳ-simp-sdev-sound : {A : Set}(t : 𝕃ʳ A) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp-sdev t ⟧
𝕃ʳ-simp-sdev-sound (l ʳ) = refl
𝕃ʳ-simp-sdev-sound (t1 ++ʳ t2)
rewrite sym (𝕃ʳ-simp-step-sound ((𝕃ʳ-simp-sdev t1) ++ʳ (𝕃ʳ-simp-sdev t2))) | 𝕃ʳ-simp-sdev-sound t1 | 𝕃ʳ-simp-sdev-sound t2 = refl
𝕃ʳ-simp-sdev-sound (mapʳ f t1)
rewrite sym (𝕃ʳ-simp-step-sound (mapʳ f (𝕃ʳ-simp-sdev t1))) | 𝕃ʳ-simp-sdev-sound t1 = refl
𝕃ʳ-simp-sdev-sound (x ::ʳ t1) rewrite 𝕃ʳ-simp-sdev-sound t1 = refl
𝕃ʳ-simp-sdev-sound []ʳ = refl
𝕃ʳ-simp-sound : {A : Set}(t : 𝕃ʳ A)(n : ℕ) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp t n ⟧
𝕃ʳ-simp-sound t 0 = refl
𝕃ʳ-simp-sound t (suc n) rewrite sym (𝕃ʳ-simp-sdev-sound (𝕃ʳ-simp t n)) = 𝕃ʳ-simp-sound t n
module test1 {A B : Set}(f : A → B)(l1 l2 : 𝕃 A) where
lhs = (mapʳ f (l1 ʳ)) ++ʳ (mapʳ f (l2 ʳ))
rhs = mapʳ f ((l1 ʳ) ++ʳ (l2 ʳ))
test-tp : Set
test-tp = 𝕃⟦ lhs ⟧ ≡ 𝕃⟦ rhs ⟧
test : test-tp
test rewrite (𝕃ʳ-simp-sdev-sound rhs) = refl
module test2 {A B : Set}(f : A → B)(l1 l2 l3 : 𝕃 A) where
lhs = mapʳ f (((l1 ʳ) ++ʳ (l2 ʳ)) ++ʳ (l3 ʳ))
rhs = 𝕃ʳ-simp lhs 3
test-tp : Set
test-tp = 𝕃⟦ lhs ⟧ ≡ 𝕃⟦ rhs ⟧
test : test-tp
test = 𝕃ʳ-simp-sound lhs 3
one-step : 𝕃ʳ B
one-step = 𝕃ʳ-simp-step lhs
sdev : 𝕃ʳ B
sdev = 𝕃ʳ-simp-sdev lhs