-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy patheq.agda
56 lines (40 loc) · 1.76 KB
/
eq.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
module eq where
open import level
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infix 3 _≡_
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
sym : ∀ {ℓ}{A : Set ℓ}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {ℓ}{A : Set ℓ}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
cong : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(p : A → B) {x y : A} → x ≡ y → p x ≡ p y
cong p refl = refl
cong-pred : ∀ {ℓ ℓ'}{A : Set ℓ}(P : A → Set ℓ') {x y : A} → x ≡ y → P x → P y
cong-pred P refl p = p
congf : ∀{l l' : Level}{A : Set l}{B : Set l'}{f f' : A → B}{b c : A} → f ≡ f' → b ≡ c → (f b) ≡ (f' c)
congf refl refl = refl
congf2 : ∀{l l' l'' : Level}{A : Set l}{B : Set l'}{C : Set l''}{f f' : A → B → C}{b c : A}{d e : B} → f ≡ f' → b ≡ c → d ≡ e → (f b d) ≡ (f' c e)
congf2 refl refl refl = refl
cong2 : ∀{i j k}{A : Set i}{B : Set j}{C : Set k}{a a' : A}{b b' : B}
→ (f : A → B → C)
→ a ≡ a'
→ b ≡ b'
→ f a b ≡ f a' b'
cong2 f refl refl = refl
cong3 : ∀{i j k l}{A : Set i}{B : Set j}{C : Set k}{D : Set l}{a a' : A}{b b' : B}{c c' : C}
→ (f : A → B → C → D)
→ a ≡ a'
→ b ≡ b'
→ c ≡ c'
→ f a b c ≡ f a' b' c'
cong3 f refl refl refl = refl