Skip to content

Latest commit

 

History

History
35 lines (27 loc) · 1.18 KB

README.md

File metadata and controls

35 lines (27 loc) · 1.18 KB

Cartesia MLX

This package contains implementations for fast on-device SSM inference on Apple silicon.

Installation

To install this package, first follow the installation instructions for cartesia-metal. Next (in your Python environment) install the cartesia-mlx package:

pip install cartesia-mlx

Note: This package has been tested on macOS Sonoma 14.1 with the M3 chip.

Models

Language Models

  • cartesia-ai/Rene-v0.1-1.3b-4bit-mlx
  • cartesia-ai/mamba2-130m-8bit-mlx
  • cartesia-ai/mamba2-130m-mlx
  • cartesia-ai/mamba2-370m-8bit-mlx
  • cartesia-ai/mamba2-780m-8bit-mlx
  • cartesia-ai/mamba2-1.3b-4bit-mlx
  • cartesia-ai/mamba2-2.7b-4bit-mlx

Usage

A simple example script for generation can be found in cartesia-mlx/example.py. Usage example (clone this repo and run the below from within the cartesia-mlx directory):

python example.py --model cartesia-ai/Rene-v0.1-1.3b-4bit-mlx --prompt "Rene Descartes was"

You can pass any of the models listed above to the --model argument; for a full list of command-line options, pass --help.

Rene in MLX

Language Model