forked from AllenNeuralDynamics/lightsheet-compression-tests
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress_h5.py
118 lines (86 loc) · 4.65 KB
/
compress_h5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from PyImarisWriter import PyImarisWriter as PW
import numpy as np
from datetime import datetime
import time
class MyCallbackClass(PW.CallbackClass):
def __init__(self):
self.mUserDataProgress = 0
def RecordProgress(self, progress, total_bytes_written):
progress100 = int(progress * 100)
if progress100 - self.mUserDataProgress >= 5:
self.mUserDataProgress = progress100
print('{}% Complete, Bytes written: {}'.format(self.mUserDataProgress, total_bytes_written))
class TestConfiguration:
def __init__(self, id, title, np_type, imaris_type, compression, color_table):
self.mId = id
self.mTitle = title
self.mNp_type = np_type
self.mImaris_type = imaris_type
self.mCompression = compression
self.mColor_table = color_table
def get_test_configurations():
configurations = []
configurations.append(TestConfiguration(len(configurations), 'compression_gzip_level1', np.uint16, 'uint16', PW.eCompressionAlgorithmGzipLevel1,
[PW.Color(0, 1, 1, 1), PW.Color(1, 0, 1, 1), PW.Color(1, 1, 0, 1)]))
configurations.append(TestConfiguration(len(configurations), 'compression_lz4', np.uint16, 'uint16', PW.eCompressionAlgorithmLZ4,
[PW.Color(0, 1, 1, 1), PW.Color(1, 0, 1, 1), PW.Color(1, 1, 0, 1)]))
configurations.append(TestConfiguration(len(configurations), 'compression_shuffle_lz4', np.uint16, 'uint16', PW.eCompressionAlgorithmShuffleLZ4,
[PW.Color(0, 1, 1, 1), PW.Color(1, 0, 1, 1), PW.Color(1, 1, 0, 1)]))
configurations.append(TestConfiguration(len(configurations), 'compression_none', np.uint16, 'uint16', PW.eCompressionAlgorithmNone,
[PW.Color(0, 1, 1, 1), PW.Color(1, 0, 1, 1), PW.Color(1, 1, 0, 1)]))
return configurations
def run(configuration, np_data, cores):
image_size = PW.ImageSize(x = np_data.shape[0], y = np_data.shape[1], z = np_data.shape[2], c = 1, t = 1)
dimension_sequence = PW.DimensionSequence('x', 'y', 'z', 'c', 't')
block_size = image_size
sample_size = PW.ImageSize(x = 1, y = 1, z = 1, c = 1, t = 1)
num_voxels = image_size.x*image_size.y*image_size.z*image_size.c*image_size.t
num_voxels_per_block = block_size.x*block_size.y*block_size.z*block_size.c*block_size.t
output_filename = f'data_{configuration.mTitle}.h5'
options = PW.Options()
options.mNumberOfThreads = cores
options.mCompressionAlgorithmType = configuration.mCompression
options.mEnableLogProgress = True
application_name = 'PyImarisWriter'
application_version = '1.0.0'
callback_class = MyCallbackClass()
converter = PW.ImageConverter(configuration.mImaris_type, image_size, sample_size, dimension_sequence, block_size,
output_filename, options, application_name, application_version, callback_class)
num_blocks = image_size/block_size
start_time = time.time()
block_index = PW.ImageSize()
for c in range(num_blocks.c):
block_index.c = c
for t in range(num_blocks.t):
block_index.t = t
for z in range(num_blocks.z):
block_index.z = z
for y in range(num_blocks.y):
block_index.y = y
for x in range(num_blocks.x):
block_index.x = x
if converter.NeedCopyBlock(block_index):
converter.CopyBlock(np_data, block_index)
adjust_color_range = True
image_extents = PW.ImageExtents(0, 0, 0, image_size.x, image_size.y, image_size.z)
parameters = PW.Parameters()
parameters.set_channel_name(0, configuration.mTitle)
time_infos = [datetime.today()]
color_infos = [PW.ColorInfo() for _ in range(image_size.c)]
color_infos[0].set_color_table(configuration.mColor_table)
converter.Finish(image_extents, parameters, time_infos, color_infos, adjust_color_range)
converter.Destroy()
print('{} MB/sec/core'.format(image_size.x*image_size.y*image_size.z*image_size.c*image_size.t*2/1e6/(time.time()-start_time)/options.mNumberOfThreads))
print('Wrote {} to {}'.format(configuration.mTitle, output_filename))
def main():
camX = 2048
camY = 2048
nFrames = 1000
nCores = 4
np_data = np.random.poisson(size = (camX, camY, nFrames))
np_data = np_data/np.max(np_data[:])*1000
configurations = get_test_configurations()
for test_config in configurations:
run(test_config, np_data.astype(test_config.mNp_type), nCores)
if __name__ == "__main__":
main()