-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathbeso_main.py
834 lines (788 loc) · 38.7 KB
/
beso_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#!/usr/bin/env python3
# optimization program using CalculiX solver
# BESO (Bi-directional Evolutionary Structural Optimization Method)
import numpy as np
import matplotlib.pyplot as plt
import multiprocessing
import os
import subprocess
import sys
import time
import beso_lib
import beso_filters
import beso_plots
import beso_separate
# import importlib
# importlib.reload(beso_plots) # reloads without FreeCAD restart
plt.close("all")
start_time = time.time()
# initialization of variables - default values
domain_optimized = {}
domain_density = {}
domain_thickness = {}
domain_offset = {}
domain_orientation = {}
domain_FI = {}
domain_material = {}
domain_same_state = {}
path = "."
path_calculix = ""
file_name = "Plane_Mesh.inp"
mass_goal_ratio = 0.4
continue_from = ""
filter_list = [["simple", 0]]
optimization_base = "stiffness"
cpu_cores = 0
FI_violated_tolerance = 1
decay_coefficient = -0.2
shells_as_composite = False
reference_points = "integration points"
reference_value = "max"
sensitivity_averaging = False
mass_addition_ratio = 0.01
mass_removal_ratio = 0.03
ratio_type = "relative"
compensate_state_filter = False
steps_superposition = []
iterations_limit = "auto"
tolerance = 1e-3
displacement_graph = []
save_iteration_results = 1
save_solver_files = ""
save_resulting_format = "inp vtk"
# Get the real beso_main.py to derive our filepath from
try:
resolved_besofile = os.readlink(__file__)
except OSError:
resolved_besofile = __file__
beso_dir = os.path.dirname(resolved_besofile)
# read configuration file to fill variables listed above
exec(open(os.path.join(beso_dir, "beso_conf.py")).read())
# if available, set the input file according to the first
# cmdline argument given to the script.
try:
if sys.argv[1] != "-":
file_name = sys.argv[1]
except IndexError:
pass
domains_from_config = domain_optimized.keys()
criteria = []
domain_FI_filled = False
for dn in domain_FI: # extracting each type of criteria
if domain_FI[dn]:
domain_FI_filled = True
for state in range(len(domain_FI[dn])):
for dn_crit in domain_FI[dn][state]:
if dn_crit not in criteria:
criteria.append(dn_crit)
# default values if not defined by user
for dn in domain_optimized:
try:
domain_thickness[dn]
except KeyError:
domain_thickness[dn] = []
try:
domain_offset[dn]
except KeyError:
domain_offset[dn] = 0.0
try:
domain_orientation[dn]
except KeyError:
domain_orientation[dn] = []
try:
domain_same_state[dn]
except KeyError:
domain_same_state[dn] = False
number_of_states = 0 # find number of states possible in elm_states
for dn in domains_from_config:
number_of_states = max(number_of_states, len(domain_density[dn]))
# set an environmental variable driving number of cpu cores to be used by CalculiX
if cpu_cores == 0: # use all processor cores
cpu_cores = multiprocessing.cpu_count()
os.putenv('OMP_NUM_THREADS', str(cpu_cores))
# writing log file with settings
msg = "\n"
msg += "---------------------------------------------------\n"
msg += ("file_name = %s\n" % file_name)
msg += ("Start at " + time.ctime() + "\n\n")
for dn in domain_optimized:
msg += ("elset_name = %s\n" % dn)
msg += ("domain_optimized = %s\n" % domain_optimized[dn])
msg += ("domain_density = %s\n" % domain_density[dn])
msg += ("domain_thickness = %s\n" % domain_thickness[dn])
msg += ("domain_offset = %s\n" % domain_offset[dn])
msg += ("domain_orientation = %s\n" % domain_orientation[dn])
try:
msg += ("domain_FI = %s\n" % domain_FI[dn])
except KeyError:
msg += "domain_FI = None\n"
msg += ("domain_material = %s\n" % domain_material[dn])
msg += ("domain_same_state = %s\n" % domain_same_state[dn])
msg += "\n"
msg += ("mass_goal_ratio = %s\n" % mass_goal_ratio)
msg += ("continue_from = %s\n" % continue_from)
msg += ("filter_list = %s\n" % filter_list)
msg += ("optimization_base = %s\n" % optimization_base)
msg += ("cpu_cores = %s\n" % cpu_cores)
msg += ("FI_violated_tolerance = %s\n" % FI_violated_tolerance)
msg += ("decay_coefficient = %s\n" % decay_coefficient)
msg += ("shells_as_composite = %s\n" % shells_as_composite)
msg += ("reference_points = %s\n" % reference_points)
msg += ("reference_value = %s\n" % reference_value)
msg += ("mass_addition_ratio = %s\n" % mass_addition_ratio)
msg += ("mass_removal_ratio = %s\n" % mass_removal_ratio)
msg += ("ratio_type = %s\n" % ratio_type)
msg += ("compensate_state_filter = %s\n" % compensate_state_filter)
msg += ("sensitivity_averaging = %s\n" % sensitivity_averaging)
msg += ("steps_superposition = %s\n" % steps_superposition)
msg += ("iterations_limit = %s\n" % iterations_limit)
msg += ("tolerance = %s\n" % tolerance)
msg += ("displacement_graph = %s\n" % displacement_graph)
msg += ("save_iteration_results = %s\n" % save_iteration_results)
msg += ("save_solver_files = %s\n" % save_solver_files)
msg += ("save_resulting_format = %s\n" % save_resulting_format)
msg += "\n"
file_name = os.path.join(path, file_name)
beso_lib.write_to_log(file_name, msg)
# mesh and domains importing
[nodes, Elements, domains, opt_domains, en_all, plane_strain, plane_stress, axisymmetry] = beso_lib.import_inp(
file_name, domains_from_config, domain_optimized, shells_as_composite)
domain_shells = {}
domain_volumes = {}
for dn in domains_from_config: # distinguishing shell elements and volume elements
domain_shells[dn] = set(domains[dn]).intersection(list(Elements.tria3.keys()) + list(Elements.tria6.keys()) +
list(Elements.quad4.keys()) + list(Elements.quad8.keys()))
domain_volumes[dn] = set(domains[dn]).intersection(list(Elements.tetra4.keys()) + list(Elements.tetra10.keys()) +
list(Elements.hexa8.keys()) + list(Elements.hexa20.keys()) +
list(Elements.penta6.keys()) + list(Elements.penta15.keys()))
# initialize element states
elm_states = {}
if isinstance(continue_from, int):
for dn in domains_from_config:
if (len(domain_density[dn]) - 1) < continue_from:
sn = len(domain_density[dn]) - 1
msg = "\nINFO: elements from the domain " + dn + " were set to the highest state.\n"
beso_lib.write_to_log(file_name, msg)
print(msg)
else:
sn = continue_from
for en in domains[dn]:
elm_states[en] = sn
elif continue_from[-4:] == ".frd":
elm_states = beso_lib.import_frd_state(continue_from, elm_states, number_of_states, file_name)
elif continue_from[-4:] == ".inp":
elm_states = beso_lib.import_inp_state(continue_from, elm_states, number_of_states, file_name)
elif continue_from[-4:] == ".csv":
elm_states = beso_lib.import_csv_state(continue_from, elm_states, file_name)
else:
for dn in domains_from_config:
for en in domains[dn]:
elm_states[en] = len(domain_density[dn]) - 1 # set to highest state
# computing volume or area, and centre of gravity of each element
[cg, cg_min, cg_max, volume_elm, area_elm] = beso_lib.elm_volume_cg(file_name, nodes, Elements)
mass = [0.0]
mass_full = 0 # sum from initial states TODO make it independent on starting elm_states?
for dn in domains_from_config:
if domain_optimized[dn] is True:
for en in domain_shells[dn]:
mass[0] += domain_density[dn][elm_states[en]] * area_elm[en] * domain_thickness[dn][elm_states[en]]
mass_full += domain_density[dn][len(domain_density[dn]) - 1] * area_elm[en] * domain_thickness[dn][
len(domain_density[dn]) - 1]
for en in domain_volumes[dn]:
mass[0] += domain_density[dn][elm_states[en]] * volume_elm[en]
mass_full += domain_density[dn][len(domain_density[dn]) - 1] * volume_elm[en]
print("initial optimization domains mass {}" .format(mass[0]))
if iterations_limit == "auto": # automatic setting
m = mass[0] / mass_full
if ratio_type == "absolute" and (mass_removal_ratio - mass_addition_ratio > 0):
iterations_limit = int((m - mass_goal_ratio) / (mass_removal_ratio - mass_addition_ratio) + 25)
elif ratio_type == "absolute" and (mass_removal_ratio - mass_addition_ratio < 0):
iterations_limit = int((mass_goal_ratio - m) / (mass_addition_ratio - mass_removal_ratio) + 25)
elif ratio_type == "relative":
it = 0
if mass_removal_ratio - mass_addition_ratio > 0:
while m > mass_goal_ratio:
m -= m * (mass_removal_ratio - mass_addition_ratio)
it += 1
else:
while m < mass_goal_ratio:
m += m * (mass_addition_ratio - mass_removal_ratio)
it += 1
iterations_limit = it + 25
print("\niterations_limit set automatically to %s" % iterations_limit)
msg = ("\niterations_limit = %s\n" % iterations_limit)
beso_lib.write_to_log(file_name, msg)
# preparing parameters for filtering sensitivity numbers
weight_factor2 = {}
near_elm = {}
weight_factor3 = []
near_elm3 = []
near_points = []
weight_factor_node = []
M = []
weight_factor_distance = []
near_nodes = []
above_elm = {}
below_elm = {}
filter_auto = False
for ft in filter_list: # find if automatic filter range is used
if ft[0] and (ft[1] == "auto") and not filter_auto:
size_elm = beso_filters.find_size_elm(Elements, nodes)
filter_auto = True
for ft in filter_list:
if ft[0] and ft[1]:
f_range = ft[1]
if ft[0] == "casting":
if len(ft) == 3:
domains_to_filter = list(opt_domains)
beso_filters.check_same_state(domain_same_state, domains_from_config, file_name)
else:
domains_to_filter = []
filtered_dn = []
for dn in ft[3:]:
domains_to_filter += domains[dn]
filtered_dn.append(dn)
beso_filters.check_same_state(domain_same_state, filtered_dn, file_name)
casting_vector = ft[2]
if f_range == "auto":
size_avg = beso_filters.get_filter_range(size_elm, domains, filtered_dn)
f_range = size_avg * 2
msg = "Filtered average element size is {}, filter range set automatically to {}".format(size_avg,
f_range)
print(msg)
beso_lib.write_to_log(file_name, msg)
[above_elm, below_elm] = beso_filters.prepare2s_casting(cg, f_range, domains_to_filter,
above_elm, below_elm, casting_vector)
continue # to evaluate other filters
if len(ft) == 2:
domains_to_filter = list(opt_domains)
filtered_dn = domains_from_config
beso_filters.check_same_state(domain_same_state, filtered_dn, file_name)
else:
domains_to_filter = []
filtered_dn = []
for dn in ft[3:]:
domains_to_filter += domains[dn]
filtered_dn.append(dn)
beso_filters.check_same_state(domain_same_state, filtered_dn, file_name)
if f_range == "auto":
size_avg = beso_filters.get_filter_range(size_elm, domains, filtered_dn)
f_range = size_avg * 2
msg = "Filtered average element size is {}, filter range set automatically to {}".format(size_avg, f_range)
print(msg)
beso_lib.write_to_log(file_name, msg)
if ft[0] == "over points":
beso_filters.check_same_state(domain_same_state, domains_from_config, file_name)
[w_f3, n_e3, n_p] = beso_filters.prepare3_tetra_grid(file_name, cg, f_range, domains_to_filter)
weight_factor3.append(w_f3)
near_elm3.append(n_e3)
near_points.append(n_p)
elif ft[0] == "over nodes":
beso_filters.check_same_state(domain_same_state, domains_from_config, file_name)
[w_f_n, M_, w_f_d, n_n] = beso_filters.prepare1s(nodes, Elements, cg, f_range, domains_to_filter)
weight_factor_node.append(w_f_n)
M.append(M_)
weight_factor_distance.append(w_f_d)
near_nodes.append(n_n)
elif ft[0] == "simple":
[weight_factor2, near_elm] = beso_filters.prepare2s(cg, cg_min, cg_max, f_range, domains_to_filter,
weight_factor2, near_elm)
elif ft[0].split()[0] in ["erode", "dilate", "open", "close", "open-close", "close-open", "combine"]:
near_elm = beso_filters.prepare_morphology(cg, cg_min, cg_max, f_range, domains_to_filter, near_elm)
# separating elements for reading nodal input
if reference_points == "nodes":
beso_separate.separating(file_name, nodes)
# writing log table header
msg = "\n"
msg += "domain order: \n"
dorder = 0
for dn in domains_from_config:
msg += str(dorder) + ") " + dn + "\n"
dorder += 1
msg += "\n i mass"
if optimization_base == "stiffness":
msg += " ener_dens_mean"
if optimization_base == "heat":
msg += " heat_flux_mean"
if domain_FI_filled:
msg += " FI_violated_0)"
for dno in range(len(domains_from_config) - 1):
msg += (" " + str(dno + 1)).rjust(4, " ") + ")"
if len(domains_from_config) > 1:
msg += " all)"
msg += " FI_mean _without_state0 FI_max_0)"
for dno in range(len(domains_from_config) - 1):
msg += str(dno + 1).rjust(17, " ") + ")"
if len(domains_from_config) > 1:
msg += "all".rjust(17, " ") + ")"
if displacement_graph:
for (ns, component) in displacement_graph:
if component == "total": # total displacement
msg += (" " + ns + "(u_total)").rjust(18, " ")
else:
msg += (" " + ns + "(" + component + ")").rjust(18, " ")
if optimization_base == "buckling":
msg += " buckling_factors"
msg += "\n"
beso_lib.write_to_log(file_name, msg)
# preparing for writing quick results
file_name_resulting_states = os.path.join(path, "resulting_states")
[en_all_vtk, associated_nodes] = beso_lib.vtk_mesh(file_name_resulting_states, nodes, Elements)
# prepare for plotting
beso_plots.plotshow(domain_FI_filled, optimization_base, displacement_graph)
# ITERATION CYCLE
sensitivity_number = {}
sensitivity_number_old = {}
FI_max = []
FI_mean = [] # list of mean stress in every iteration
FI_mean_without_state0 = [] # mean stress without elements in state 0
energy_density_mean = [] # list of mean energy density in every iteration
heat_flux_mean = [] # list of mean heat flux in every iteration
FI_violated = []
disp_max = []
buckling_factors_all = []
i = 0
i_violated = 0
continue_iterations = True
check_tolerance = False
mass_excess = 0.0
elm_states_before_last = {}
elm_states_last = elm_states
oscillations = False
while True:
# creating the new .inp file for CalculiX
file_nameW = os.path.join(path, "file" + str(i).zfill(3))
beso_lib.write_inp(file_name, file_nameW, elm_states, number_of_states, domains, domains_from_config,
domain_optimized, domain_thickness, domain_offset, domain_orientation, domain_material,
domain_volumes, domain_shells, plane_strain, plane_stress, axisymmetry, save_iteration_results,
i, reference_points, shells_as_composite, optimization_base, displacement_graph,
domain_FI_filled)
# running CalculiX analysis
if sys.platform.startswith('linux') or sys.platform.startswith('darwin'):
subprocess.call([os.path.normpath(path_calculix), file_nameW], cwd=path)
else:
subprocess.call([os.path.normpath(path_calculix), file_nameW], cwd=path, shell=True)
# reading results and computing failure indices
if (reference_points == "integration points") or (optimization_base == "stiffness") or \
(optimization_base == "buckling") or (optimization_base == "heat"): # from .dat file
[FI_step, energy_density_step, disp_i, buckling_factors, energy_density_eigen, heat_flux] = \
beso_lib.import_FI_int_pt(reference_value, file_nameW, domains, criteria, domain_FI, file_name, elm_states,
domains_from_config, steps_superposition, displacement_graph)
if reference_points == "nodes": # from .frd file
FI_step = beso_lib.import_FI_node(reference_value, file_nameW, domains, criteria, domain_FI, file_name,
elm_states, steps_superposition)
disp_i = beso_lib.import_displacement(file_nameW, displacement_graph, steps_superposition)
disp_max.append(disp_i)
# check if results were found
missing_ccx_results = False
if (optimization_base == "stiffness") and (not energy_density_step):
missing_ccx_results = True
elif (optimization_base == "buckling") and (not buckling_factors):
missing_ccx_results = True
elif (optimization_base == "heat") and (not heat_flux):
missing_ccx_results = True
elif domain_FI_filled and (not FI_step):
missing_ccx_results = True
if missing_ccx_results:
msg = "CalculiX results not found, check CalculiX for errors."
beso_lib.write_to_log(file_name, "\nERROR: " + msg + "\n")
assert False, msg
if domain_FI_filled:
FI_max.append({})
for dn in domains_from_config:
FI_max[i][dn] = 0
for en in domains[dn]:
for sn in range(len(FI_step)):
try:
FI_step_en = list(filter(lambda a: a is not None, FI_step[sn][en])) # drop None FI
FI_max[i][dn] = max(FI_max[i][dn], max(FI_step_en))
except ValueError:
msg = "FI_max computing failed. Check if each domain contains at least one failure criterion."
beso_lib.write_to_log(file_name, "\nERROR: " + msg + "\n")
raise Exception(msg)
except KeyError:
msg = "Some result values are missing. Check available disk space or steps_superposition " \
"settings"
beso_lib.write_to_log(file_name, "\nERROR: " + msg + "\n")
raise Exception(msg)
print("FI_max, number of violated elements, domain name")
# handling with more steps
FI_step_max = {} # maximal FI over all steps for each element in this iteration
energy_density_enlist = {} # {en1: [energy from sn1, energy from sn2, ...], en2: [], ...}
FI_violated.append([])
dno = 0
for dn in domains_from_config:
FI_violated[i].append(0)
for en in domains[dn]:
FI_step_max[en] = 0
if optimization_base == "stiffness":
energy_density_enlist[en] = []
for sn in range(len(FI_step)):
if domain_FI_filled:
FI_step_en = list(filter(lambda a: a is not None, FI_step[sn][en])) # drop None FI
FI_step_max[en] = max(FI_step_max[en], max(FI_step_en))
if optimization_base == "stiffness":
energy_density_enlist[en].append(energy_density_step[sn][en])
if optimization_base == "stiffness":
sensitivity_number[en] = max(energy_density_enlist[en])
elif optimization_base == "heat":
try:
sensitivity_number[en] = heat_flux[en] / volume_elm[en]
except KeyError:
sensitivity_number[en] = heat_flux[en] / (area_elm[en] * domain_thickness[dn][elm_states[en]])
elif optimization_base == "failure_index":
sensitivity_number[en] = FI_step_max[en] / domain_density[dn][elm_states[en]]
if domain_FI_filled:
if FI_step_max[en] >= 1:
FI_violated[i][dno] += 1
if domain_FI_filled:
print(str(FI_max[i][dn]).rjust(15) + " " + str(FI_violated[i][dno]).rjust(4) + " " + dn)
dno += 1
# buckling sensitivities
if optimization_base == "buckling":
# eigen energy density normalization
#energy_density_eigen[eigen_number][en_last] = np.average(ener_int_pt)
denominator = [] # normalization denominator for each buckling factor with numbering from 0
for eigen_number in energy_density_eigen: # numbering from 1
denominator.append(max(energy_density_eigen[eigen_number].values()))
bf_dif = {}
bf_coef = {}
buckling_influence_tolerance = 0.2 # Ki - K1 tolerance to influence sensitivity
for bfn in range(len(buckling_factors) - 1):
bf_dif_i = buckling_factors[bfn + 1] - buckling_factors[0]
if bf_dif_i < buckling_influence_tolerance:
bf_dif[bfn] = bf_dif_i
bf_coef[bfn] = bf_dif_i / buckling_influence_tolerance
for dn in domains_from_config:
for en in domains[dn]:
sensitivity_number[en] = energy_density_eigen[1][en] / denominator[0]
for bfn in bf_dif:
sensitivity_number[en] += energy_density_eigen[bfn + 1][en] / denominator[bfn] * bf_coef[bfn]
# filtering sensitivity number
kp = 0
kn = 0
for ft in filter_list:
if ft[0] and ft[1]:
if ft[0] == "casting":
if len(ft) == 3:
domains_to_filter = list(opt_domains)
else:
domains_to_filter = []
for dn in ft[3:]:
domains_to_filter += domains[dn]
sensitivity_number = beso_filters.run2_casting(sensitivity_number, above_elm, below_elm,
domains_to_filter)
continue # to evaluate other filters
if len(ft) == 2:
domains_to_filter = list(opt_domains)
else:
domains_to_filter = []
for dn in ft[2:]:
domains_to_filter += domains[dn]
if ft[0] == "over points":
sensitivity_number = beso_filters.run3(sensitivity_number, weight_factor3[kp], near_elm3[kp],
near_points[kp])
kp += 1
elif ft[0] == "over nodes":
sensitivity_number = beso_filters.run1(file_name, sensitivity_number, weight_factor_node[kn], M[kn],
weight_factor_distance[kn], near_nodes[kn], nodes,
domains_to_filter)
kn += 1
elif ft[0] == "simple":
sensitivity_number = beso_filters.run2(file_name, sensitivity_number, weight_factor2, near_elm,
domains_to_filter)
elif ft[0].split()[0] in ["erode", "dilate", "open", "close", "open-close", "close-open", "combine"]:
if ft[0].split()[1] == "sensitivity":
sensitivity_number = beso_filters.run_morphology(sensitivity_number, near_elm, domains_to_filter,
ft[0].split()[0])
if sensitivity_averaging:
for en in opt_domains:
# averaging with the last iteration should stabilize iterations
if i > 0:
sensitivity_number[en] = (sensitivity_number[en] + sensitivity_number_old[en]) / 2.0
sensitivity_number_old[en] = sensitivity_number[en] # for averaging in the next step
# computing mean stress from maximums of each element in all steps in the optimization domain
if domain_FI_filled:
FI_mean_sum = 0
FI_mean_sum_without_state0 = 0
mass_without_state0 = 0
if optimization_base == "stiffness":
energy_density_mean_sum = 0 # mean of element maximums
if optimization_base == "heat":
heat_flux_mean_sum = 0
for dn in domain_optimized:
if domain_optimized[dn] is True:
for en in domain_shells[dn]:
mass_elm = domain_density[dn][elm_states[en]] * area_elm[en] * domain_thickness[dn][elm_states[en]]
if domain_FI_filled:
FI_mean_sum += FI_step_max[en] * mass_elm
if elm_states[en] != 0:
FI_mean_sum_without_state0 += FI_step_max[en] * mass_elm
mass_without_state0 += mass_elm
if optimization_base == "stiffness":
energy_density_mean_sum += max(energy_density_enlist[en]) * mass_elm
if optimization_base == "heat":
heat_flux_mean_sum += heat_flux[en] * mass_elm
for en in domain_volumes[dn]:
mass_elm = domain_density[dn][elm_states[en]] * volume_elm[en]
if domain_FI_filled:
FI_mean_sum += FI_step_max[en] * mass_elm
if elm_states[en] != 0:
FI_mean_sum_without_state0 += FI_step_max[en] * mass_elm
mass_without_state0 += mass_elm
if optimization_base == "stiffness":
energy_density_mean_sum += max(energy_density_enlist[en]) * mass_elm
if optimization_base == "heat":
heat_flux_mean_sum += heat_flux[en] * mass_elm
if domain_FI_filled:
FI_mean.append(FI_mean_sum / mass[i])
print("FI_mean = {}".format(FI_mean[i]))
if mass_without_state0:
FI_mean_without_state0.append(FI_mean_sum_without_state0 / mass_without_state0)
print("FI_mean_without_state0 = {}".format(FI_mean_without_state0[i]))
else:
FI_mean_without_state0.append("NaN")
if optimization_base == "stiffness":
energy_density_mean.append(energy_density_mean_sum / mass[i])
print("energy_density_mean = {}".format(energy_density_mean[i]))
if optimization_base == "heat":
heat_flux_mean.append(heat_flux_mean_sum / mass[i])
print("heat_flux_mean = {}".format(heat_flux_mean[i]))
if optimization_base == "buckling":
k = 1
for bf in buckling_factors:
print("buckling factor K{} = {}".format(k, bf))
k += 1
# writing log table row
msg = str(i).rjust(4, " ") + " " + str(mass[i]).rjust(17, " ") + " "
if optimization_base == "stiffness":
msg += " " + str(energy_density_mean[i]).rjust(17, " ")
if optimization_base == "heat":
msg += " " + str(heat_flux_mean[i]).rjust(17, " ")
if domain_FI_filled:
msg += str(FI_violated[i][0]).rjust(13, " ")
for dno in range(len(domains_from_config) - 1):
msg += " " + str(FI_violated[i][dno + 1]).rjust(4, " ")
if len(domains_from_config) > 1:
msg += " " + str(sum(FI_violated[i])).rjust(4, " ")
msg += " " + str(FI_mean[i]).rjust(17, " ") + " " + str(FI_mean_without_state0[i]).rjust(18, " ")
FI_max_all = 0
for dn in domains_from_config:
msg += " " + str(FI_max[i][dn]).rjust(17, " ")
FI_max_all = max(FI_max_all, FI_max[i][dn])
if len(domains_from_config) > 1:
msg += " " + str(FI_max_all).rjust(17, " ")
for cn in range(len(displacement_graph)):
msg += " " + str(disp_i[cn]).rjust(17, " ")
if optimization_base == "buckling":
for bf in buckling_factors:
msg += " " + str(bf).rjust(17, " ")
buckling_factors_all.append(buckling_factors)
msg += "\n"
beso_lib.write_to_log(file_name, msg)
# export element values
if save_iteration_results and np.mod(float(i), save_iteration_results) == 0:
if "csv" in save_resulting_format:
beso_lib.export_csv(domains_from_config, domains, criteria, FI_step, FI_step_max, file_nameW, cg,
elm_states, sensitivity_number)
if "vtk" in save_resulting_format:
beso_lib.export_vtk(file_nameW, nodes, Elements, elm_states, sensitivity_number, criteria, FI_step,
FI_step_max)
# relative difference in a mean stress for the last 5 iterations must be < tolerance
if len(FI_mean) > 5:
difference_last = []
for last in range(1, 6):
difference_last.append(abs(FI_mean[i] - FI_mean[i-last]) / FI_mean[i])
difference = max(difference_last)
if check_tolerance is True:
print("maximum relative difference in FI_mean for the last 5 iterations = {}" .format(difference))
if difference < tolerance:
continue_iterations = False
elif FI_mean[i] == FI_mean[i-1] == FI_mean[i-2]:
continue_iterations = False
print("FI_mean[i] == FI_mean[i-1] == FI_mean[i-2]")
# relative difference in a mean energy density for the last 5 iterations must be < tolerance
if len(energy_density_mean) > 5:
difference_last = []
for last in range(1, 6):
difference_last.append(abs(energy_density_mean[i] - energy_density_mean[i - last]) / energy_density_mean[i])
difference = max(difference_last)
if check_tolerance is True:
print("maximum relative difference in energy_density_mean for the last 5 iterations = {}".format(difference))
if difference < tolerance:
continue_iterations = False
elif energy_density_mean[i] == energy_density_mean[i - 1] == energy_density_mean[i - 2]:
continue_iterations = False
print("energy_density_mean[i] == energy_density_mean[i-1] == energy_density_mean[i-2]")
# finish or start new iteration
if continue_iterations is False or i >= iterations_limit:
if not(save_iteration_results and np.mod(float(i), save_iteration_results) == 0):
if "csv" in save_resulting_format:
beso_lib.export_csv(domains_from_config, domains, criteria, FI_step, FI_step_max, file_nameW, cg,
elm_states, sensitivity_number)
if "vtk" in save_resulting_format:
beso_lib.export_vtk(file_nameW, nodes, Elements, elm_states, sensitivity_number, criteria, FI_step,
FI_step_max)
break
# plot and save figures
beso_plots.replot(path, i, oscillations, mass, domain_FI_filled, domains_from_config, FI_violated, FI_mean,
FI_mean_without_state0, FI_max, optimization_base, energy_density_mean, heat_flux_mean,
displacement_graph, disp_max, buckling_factors_all, savefig=True)
i += 1 # iteration number
print("\n----------- new iteration number %d ----------" % i)
# set mass_goal for i-th iteration, check for number of violated elements
if mass_removal_ratio - mass_addition_ratio > 0: # removing from initial mass
if sum(FI_violated[i - 1]) > sum(FI_violated[0]) + FI_violated_tolerance:
if mass[i - 1] >= mass_goal_ratio * mass_full:
mass_goal_i = mass[i - 1] # use mass_new from previous iteration
else: # not to drop below goal mass
mass_goal_i = mass_goal_ratio * mass_full
if i_violated == 0:
i_violated = i
check_tolerance = True
elif mass[i - 1] <= mass_goal_ratio * mass_full: # goal mass achieved
if not i_violated:
i_violated = i # to start decaying
check_tolerance = True
try:
mass_goal_i
except NameError:
msg = "\nWARNING: mass goal is lower than initial mass. Check mass_goal_ratio."
beso_lib.write_to_log(file_name, msg + "\n")
else:
mass_goal_i = mass_goal_ratio * mass_full
else: # adding to initial mass TODO include stress limit
if mass[i - 1] < mass_goal_ratio * mass_full:
mass_goal_i = mass[i - 1] + (mass_addition_ratio - mass_removal_ratio) * mass_full
elif mass[i - 1] >= mass_goal_ratio * mass_full:
if not i_violated:
i_violated = i # to start decaying
check_tolerance = True
mass_goal_i = mass_goal_ratio * mass_full
# switch element states
if ratio_type == "absolute":
mass_referential = mass_full
elif ratio_type == "relative":
mass_referential = mass[i - 1]
[elm_states, mass] = beso_lib.switching(elm_states, domains_from_config, domain_optimized, domains, FI_step_max,
domain_density, domain_thickness, domain_shells, area_elm, volume_elm,
sensitivity_number, mass, mass_referential, mass_addition_ratio,
mass_removal_ratio, compensate_state_filter, mass_excess, decay_coefficient,
FI_violated, i_violated, i, mass_goal_i, domain_same_state)
# filtering state
mass_not_filtered = mass[i] # use variable to store the "right" mass
for ft in filter_list:
if ft[0] and ft[1]:
if ft[0] == "casting":
continue # to evaluate other filters
if len(ft) == 2:
domains_to_filter = list(opt_domains)
else:
domains_to_filter = []
for dn in ft[2:]:
domains_to_filter += domains[dn]
if ft[0].split()[0] in ["erode", "dilate", "open", "close", "open-close", "close-open", "combine"]:
if ft[0].split()[1] == "state":
# the same filter as for sensitivity numbers
elm_states_filtered = beso_filters.run_morphology(elm_states, near_elm, domains_to_filter,
ft[0].split()[0], FI_step_max)
# compute mass difference
for dn in domains_from_config:
if domain_optimized[dn] is True:
for en in domain_shells[dn]:
if elm_states[en] != elm_states_filtered[en]:
mass[i] += area_elm[en] * (
domain_density[dn][elm_states_filtered[en]] * domain_thickness[dn][
elm_states_filtered[en]]
- domain_density[dn][elm_states[en]] * domain_thickness[dn][elm_states[en]])
elm_states[en] = elm_states_filtered[en]
for en in domain_volumes[dn]:
if elm_states[en] != elm_states_filtered[en]:
mass[i] += volume_elm[en] * (
domain_density[dn][elm_states_filtered[en]] - domain_density[dn][elm_states[en]])
elm_states[en] = elm_states_filtered[en]
print("mass = {}" .format(mass[i]))
mass_excess = mass[i] - mass_not_filtered
# export the present mesh
beso_lib.append_vtk_states(file_name_resulting_states, i, en_all_vtk, elm_states)
file_nameW2 = os.path.join(path, "file" + str(i).zfill(3))
if save_iteration_results and np.mod(float(i), save_iteration_results) == 0:
if "frd" in save_resulting_format:
beso_lib.export_frd(file_nameW2, nodes, Elements, elm_states, number_of_states)
if "inp" in save_resulting_format:
beso_lib.export_inp(file_nameW2, nodes, Elements, elm_states, number_of_states)
# check for oscillation state
if elm_states_before_last == elm_states: # oscillating state
msg = "\nOSCILLATION: model turns back to " + str(i - 2) + "th iteration.\n"
beso_lib.write_to_log(file_name, msg)
print(msg)
oscillations = True
break
elm_states_before_last = elm_states_last.copy()
elm_states_last = elm_states.copy()
# removing solver files
if save_iteration_results and np.mod(float(i - 1), save_iteration_results) == 0:
if "inp" not in save_solver_files:
os.remove(file_nameW + ".inp")
if "dat" not in save_solver_files:
os.remove(file_nameW + ".dat")
if "frd" not in save_solver_files:
os.remove(file_nameW + ".frd")
if "sta" not in save_solver_files:
os.remove(file_nameW + ".sta")
if "cvg" not in save_solver_files:
os.remove(file_nameW + ".cvg")
if "12d" not in save_solver_files:
try:
os.remove(file_nameW + ".12d")
except FileNotFoundError:
pass
else:
os.remove(file_nameW + ".inp")
os.remove(file_nameW + ".dat")
os.remove(file_nameW + ".frd")
os.remove(file_nameW + ".sta")
os.remove(file_nameW + ".cvg")
try:
os.remove(file_nameW + ".12d")
except FileNotFoundError:
pass
# export the resulting mesh
if not (save_iteration_results and np.mod(float(i), save_iteration_results) == 0):
if "frd" in save_resulting_format:
beso_lib.export_frd(file_nameW, nodes, Elements, elm_states, number_of_states)
if "inp" in save_resulting_format:
beso_lib.export_inp(file_nameW, nodes, Elements, elm_states, number_of_states)
# removing solver files
if "inp" not in save_solver_files:
os.remove(file_nameW + ".inp")
if reference_points == "nodes":
os.remove(file_name[:-4] + "_separated.inp")
if "dat" not in save_solver_files:
os.remove(file_nameW + ".dat")
if "frd" not in save_solver_files:
os.remove(file_nameW + ".frd")
if "sta" not in save_solver_files:
os.remove(file_nameW + ".sta")
if "cvg" not in save_solver_files:
os.remove(file_nameW + ".cvg")
if "12d" not in save_solver_files:
try:
os.remove(file_nameW + ".12d")
except FileNotFoundError:
pass
# plot and save figures
beso_plots.replot(path, i, oscillations, mass, domain_FI_filled, domains_from_config, FI_violated, FI_mean,
FI_mean_without_state0, FI_max, optimization_base, energy_density_mean, heat_flux_mean,
displacement_graph, disp_max, buckling_factors_all, savefig=True,)
# print total time
total_time = time.time() - start_time
total_time_h = int(total_time / 3600.0)
total_time_min = int((total_time % 3600) / 60.0)
total_time_s = int(round(total_time % 60))
msg = "\n"
msg += ("Finished at " + time.ctime() + "\n")
msg += ("Total time " + str(total_time_h) + " h " + str(total_time_min) + " min " + str(total_time_s) + " s\n")
msg += "\n"
beso_lib.write_to_log(file_name, msg)
print("total time: " + str(total_time_h) + " h " + str(total_time_min) + " min " + str(total_time_s) + " s")