-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluator.py
791 lines (657 loc) · 48.6 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
import math
import os
import concurrent.futures
from functools import partial
from utils import *
from query_llm import *
from dataset_utils import relation_by_super_class_int2str, object_class_int2str
class Evaluator:
"""
The class evaluate the model performance on Recall@k and mean Recall@k evaluation metrics on predicate classification tasks.
In our hierarchical relationship scheme, each edge has three predictions per direction under three disjoint super-categories.
Therefore, each directed edge outputs three individual candidates to be ranked in the top k most confident predictions instead of one.
"""
def __init__(self, args, num_classes, iou_thresh, top_k, max_cache_size=10000):
self.args = args
self.hierar = args['models']['hierarchical_pred']
self.top_k = top_k
self.num_classes = num_classes
self.iou_thresh = iou_thresh
self.num_connected_target = 0.0
self.motif_total = 0.0
self.motif_correct = 0.0
self.result_dict = {20: 0.0, 50: 0.0, 100: 0.0}
self.result_per_class = {k: torch.tensor([0.0 for i in range(self.num_classes)]) for k in self.top_k}
self.num_conn_target_per_class = torch.tensor([0.0 for i in range(self.num_classes)])
self.feature_size = args['models']['feature_size']
self.run_mode = args['training']['run_mode']
if args['dataset']['dataset'] == 'vg':
self.train_triplets = torch.load(args['dataset']['train_triplets'])
self.test_triplets = torch.load(args['dataset']['test_triplets'])
self.zero_shot_triplets = torch.load(args['dataset']['zero_shot_triplets'])
self.result_dict_zs = {20: 0.0, 50: 0.0, 100: 0.0}
self.result_per_class_zs = {k: torch.tensor([0.0 for i in range(self.num_classes)]) for k in self.top_k}
self.num_connected_target_zs = 0.0
self.num_conn_target_per_class_zs = torch.tensor([0.0 for i in range(self.num_classes)])
elif args['dataset']['dataset'] == 'oiv6':
self.result_per_class_ap = torch.tensor([0.0 for i in range(self.num_classes)])
self.result_per_class_ap_union = torch.tensor([0.0 for i in range(self.num_classes)])
self.num_conn_target_per_class_ap = torch.tensor([0.0 for i in range(self.num_classes)])
self.which_in_batch = None
self.which_in_batch_target = None
# self.connected_pred = None
self.confidence = None
self.connectivity = None
self.relation_pred = None
self.relation_target = None
self.subject_cat_pred = None
self.object_cat_pred = None
self.subject_cat_target = None
self.object_cat_target = None
self.subject_bbox_pred = None
self.object_bbox_pred = None
self.subject_bbox_target = None
self.object_bbox_target = None
self.annotation_paths = None
self.cache_hits = 0
self.total_cache_queries = 0
self.max_cache_size = max_cache_size
self.cache = EdgeCache(max_cache_size=max_cache_size)
self.image_cache = ImageCache(image_size=self.args['models']['image_size'], feature_size=self.args['models']['feature_size'])
self.dict_relation_names = relation_by_super_class_int2str()
self.dict_object_names = object_class_int2str()
if self.args['models']['llm_model'] == 'gpt4v':
self.commonsense_aligned_triplets = torch.load('triplets/commonsense_aligned_triplets_gpt4v.pt') if args['training']['run_mode'] == 'train_cs' or self.run_mode == 'eval_cs' else None
self.commonsense_violated_triplets = torch.load('triplets/commonsense_violated_triplets_gpt4v.pt') if args['training']['run_mode'] == 'train_cs' or self.run_mode == 'eval_cs' else None
else:
self.commonsense_aligned_triplets = torch.load('triplets/commonsense_aligned_triplets.pt') if args['training']['run_mode'] == 'train_cs' or self.run_mode == 'eval_cs' else None
self.commonsense_violated_triplets = torch.load('triplets/commonsense_violated_triplets.pt') if args['training']['run_mode'] == 'train_cs' or self.run_mode == 'eval_cs' else None
def iou(self, bbox_target, bbox_pred):
mask_pred = torch.zeros(self.feature_size, self.feature_size)
mask_pred[int(bbox_pred[2]):int(bbox_pred[3]), int(bbox_pred[0]):int(bbox_pred[1])] = 1
mask_target = torch.zeros(self.feature_size, self.feature_size)
mask_target[int(bbox_target[2]):int(bbox_target[3]), int(bbox_target[0]):int(bbox_target[1])] = 1
intersect = torch.sum(torch.logical_and(mask_target, mask_pred))
union = torch.sum(torch.logical_or(mask_target, mask_pred))
if union == 0:
return 0
else:
return float(intersect) / float(union)
def iou_union(self, bbox_pred1, bbox_pred2, bbox_target1, bbox_target2):
mask_pred1 = torch.zeros(self.feature_size, self.feature_size)
mask_pred1[int(bbox_pred1[2]):int(bbox_pred1[3]), int(bbox_pred1[0]):int(bbox_pred1[1])] = 1
mask_pred2 = torch.zeros(self.feature_size, self.feature_size)
mask_pred2[int(bbox_pred2[2]):int(bbox_pred2[3]), int(bbox_pred2[0]):int(bbox_pred2[1])] = 1
mask_pred = torch.logical_or(mask_pred1, mask_pred2)
mask_target1 = torch.zeros(self.feature_size, self.feature_size)
mask_target1[int(bbox_target1[2]):int(bbox_target1[3]), int(bbox_target1[0]):int(bbox_target1[1])] = 1
mask_target2 = torch.zeros(self.feature_size, self.feature_size)
mask_target2[int(bbox_target2[2]):int(bbox_target2[3]), int(bbox_target2[0]):int(bbox_target2[1])] = 1
mask_target = torch.logical_or(mask_target1, mask_target2)
intersect = torch.sum(torch.logical_and(mask_target, mask_pred))
union = torch.sum(torch.logical_or(mask_target, mask_pred))
if union == 0:
return 0
else:
return float(intersect) / float(union)
def accumulate(self, which_in_batch, relation_pred, relation_target, super_relation_pred, connectivity,
subject_cat_pred, object_cat_pred, subject_cat_target, object_cat_target,
subject_bbox_pred, object_bbox_pred, subject_bbox_target, object_bbox_target, iou_mask,
predcls=True, cat_subject_confidence=None, cat_object_confidence=None, height=None, width=None):
if self.relation_pred is None:
if not self.hierar: # flat relationship prediction
self.which_in_batch = which_in_batch
self.connectivity = connectivity
self.confidence = torch.max(relation_pred, dim=1)[0] #+ connectivity
if not predcls:
ins_pair_confidence = cat_subject_confidence + cat_object_confidence
self.confidence += ins_pair_confidence
self.confidence[~iou_mask] = -math.inf
self.relation_pred = torch.argmax(relation_pred, dim=1)
self.subject_cat_pred = subject_cat_pred
self.object_cat_pred = object_cat_pred
self.subject_bbox_pred = subject_bbox_pred
self.object_bbox_pred = object_bbox_pred
if predcls:
self.which_in_batch_target = which_in_batch
self.relation_target = relation_target
self.subject_cat_target = subject_cat_target
self.object_cat_target = object_cat_target
self.subject_bbox_target = subject_bbox_target
self.object_bbox_target = object_bbox_target
if self.run_mode == 'train_cs' or self.run_mode == 'eval_cs':
triplets = torch.hstack((self.subject_cat_pred.unsqueeze(1), self.relation_pred.unsqueeze(1), self.object_cat_pred.unsqueeze(1)))
is_in_no_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) in self.commonsense_violated_triplets for i in range(len(triplets))], device=self.confidence.device)
not_in_yes_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) not in self.commonsense_aligned_triplets for i in range(len(triplets))], device=self.confidence.device)
self.confidence[not_in_yes_dict] = -math.inf
self.confidence[is_in_no_dict] = -math.inf
else:
self.which_in_batch = which_in_batch.repeat(3)
self.connectivity = connectivity.repeat(3)
self.confidence = torch.hstack((torch.max(relation_pred[:, :self.args['models']['num_geometric']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']:
self.args['models']['num_geometric'] + self.args['models']['num_possessive']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric'] + self.args['models']['num_possessive']:], dim=1)[0]))
if not predcls:
ins_pair_confidence = cat_subject_confidence + cat_object_confidence
self.confidence += ins_pair_confidence.repeat(3)
iou_mask = iou_mask.repeat(3)
self.confidence[~iou_mask] = -math.inf
self.relation_pred = torch.hstack((torch.argmax(relation_pred[:, :self.args['models']['num_geometric']], dim=1),
torch.argmax(relation_pred[:, self.args['models']['num_geometric']:self.args['models']['num_geometric']+self.args['models']['num_possessive']], dim=1)
+ self.args['models']['num_geometric'],
torch.argmax(relation_pred[:, self.args['models']['num_geometric']+self.args['models']['num_possessive']:], dim=1)
+ self.args['models']['num_geometric'] + self.args['models']['num_possessive']))
self.subject_cat_pred = subject_cat_pred.repeat(3)
self.object_cat_pred = object_cat_pred.repeat(3)
self.subject_bbox_pred = subject_bbox_pred.repeat(3, 1)
self.object_bbox_pred = object_bbox_pred.repeat(3, 1)
if predcls:
self.which_in_batch_target = which_in_batch
self.relation_target = relation_target
self.subject_cat_target = subject_cat_target
self.object_cat_target = object_cat_target
self.subject_bbox_target = subject_bbox_target
self.object_bbox_target = object_bbox_target
if self.run_mode == 'train_cs' or self.run_mode == 'eval_cs':
triplets = torch.hstack((self.subject_cat_pred.unsqueeze(1), self.relation_pred.unsqueeze(1), self.object_cat_pred.unsqueeze(1)))
is_in_no_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) in self.commonsense_violated_triplets for i in range(len(triplets))], device=self.confidence.device)
not_in_yes_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) not in self.commonsense_aligned_triplets for i in range(len(triplets))], device=self.confidence.device)
self.confidence[is_in_no_dict] = -math.inf
self.confidence[not_in_yes_dict] = -math.inf
else:
if not self.hierar: # flat relationship prediction
self.which_in_batch = torch.hstack((self.which_in_batch, which_in_batch))
confidence = torch.max(relation_pred, dim=1)[0] #+ connectivity
if not predcls:
ins_pair_confidence = cat_subject_confidence + cat_object_confidence
confidence += ins_pair_confidence
confidence[~iou_mask] = -math.inf
relation_pred = torch.argmax(relation_pred, dim=1)
self.relation_pred = torch.hstack((self.relation_pred, relation_pred))
self.subject_cat_pred = torch.hstack((self.subject_cat_pred, subject_cat_pred))
self.object_cat_pred = torch.hstack((self.object_cat_pred, object_cat_pred))
self.subject_bbox_pred = torch.vstack((self.subject_bbox_pred, subject_bbox_pred))
self.object_bbox_pred = torch.vstack((self.object_bbox_pred, object_bbox_pred))
if predcls:
self.which_in_batch_target = torch.hstack((self.which_in_batch_target, which_in_batch))
self.relation_target = torch.hstack((self.relation_target, relation_target))
self.subject_cat_target = torch.hstack((self.subject_cat_target, subject_cat_target))
self.object_cat_target = torch.hstack((self.object_cat_target, object_cat_target))
self.subject_bbox_target = torch.vstack((self.subject_bbox_target, subject_bbox_target))
self.object_bbox_target = torch.vstack((self.object_bbox_target, object_bbox_target))
if self.run_mode == 'train_cs' or self.run_mode == 'eval_cs':
triplets = torch.hstack((subject_cat_pred.unsqueeze(1), relation_pred.unsqueeze(1), object_cat_pred.unsqueeze(1)))
is_in_no_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) in self.commonsense_violated_triplets for i in range(len(triplets))], device=self.confidence.device)
not_in_yes_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) not in self.commonsense_aligned_triplets for i in range(len(triplets))], device=self.confidence.device)
confidence[is_in_no_dict] = -math.inf
confidence[not_in_yes_dict] = -math.inf
self.confidence = torch.hstack((self.confidence, confidence))
self.connectivity = torch.hstack((self.connectivity, connectivity))
else:
self.which_in_batch = torch.hstack((self.which_in_batch, which_in_batch.repeat(3)))
relation_pred_candid = torch.hstack((torch.argmax(relation_pred[:, :self.args['models']['num_geometric']], dim=1),
torch.argmax(relation_pred[:, self.args['models']['num_geometric']:self.args['models']['num_geometric']+self.args['models']['num_possessive']], dim=1)
+ self.args['models']['num_geometric'],
torch.argmax(relation_pred[:, self.args['models']['num_geometric']+self.args['models']['num_possessive']:], dim=1)
+ self.args['models']['num_geometric'] + self.args['models']['num_possessive']))
self.relation_pred = torch.hstack((self.relation_pred, relation_pred_candid))
self.subject_cat_pred = torch.hstack((self.subject_cat_pred, subject_cat_pred.repeat(3)))
self.object_cat_pred = torch.hstack((self.object_cat_pred, object_cat_pred.repeat(3)))
self.subject_bbox_pred = torch.vstack((self.subject_bbox_pred, subject_bbox_pred.repeat(3, 1)))
self.object_bbox_pred = torch.vstack((self.object_bbox_pred, object_bbox_pred.repeat(3, 1)))
confidence = torch.hstack((torch.max(relation_pred[:, :self.args['models']['num_geometric']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']:self.args['models']['num_geometric'] + self.args['models']['num_possessive']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric'] + self.args['models']['num_possessive']:], dim=1)[0]))
if not predcls:
ins_pair_confidence = cat_subject_confidence + cat_object_confidence
confidence += ins_pair_confidence.repeat(3)
iou_mask = iou_mask.repeat(3)
confidence[~iou_mask] = -math.inf
if predcls:
self.which_in_batch_target = torch.hstack((self.which_in_batch_target, which_in_batch))
self.relation_target = torch.hstack((self.relation_target, relation_target))
self.subject_cat_target = torch.hstack((self.subject_cat_target, subject_cat_target))
self.object_cat_target = torch.hstack((self.object_cat_target, object_cat_target))
self.subject_bbox_target = torch.vstack((self.subject_bbox_target, subject_bbox_target))
self.object_bbox_target = torch.vstack((self.object_bbox_target, object_bbox_target))
if self.run_mode == 'train_cs' or self.run_mode == 'eval_cs':
triplets = torch.hstack((subject_cat_pred.repeat(3).unsqueeze(1), relation_pred_candid.unsqueeze(1), object_cat_pred.repeat(3).unsqueeze(1)))
is_in_no_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) in self.commonsense_violated_triplets for i in range(len(triplets))], device=self.confidence.device)
not_in_yes_dict = torch.tensor([tuple(triplets[i].cpu().tolist()) not in self.commonsense_aligned_triplets for i in range(len(triplets))], device=self.confidence.device)
confidence[is_in_no_dict] = -math.inf
confidence[not_in_yes_dict] = -math.inf
self.confidence = torch.hstack((self.confidence, confidence))
self.connectivity = torch.hstack((self.connectivity, connectivity.repeat(3)))
def accumulate_target(self, relation_target, subject_cat_target, object_cat_target, subject_bbox_target, object_bbox_target):
self.relation_target = relation_target
self.subject_cat_target = subject_cat_target
self.object_cat_target = object_cat_target
self.subject_bbox_target = subject_bbox_target
self.object_bbox_target = object_bbox_target
def compute(self, per_class=False, predcls=True):
"""
A ground truth predicate is considered to match a hypothesized relationship iff the predicted relationship is correct,
the subject and object labels match, and the bounding boxes associated with the subject and object both have IOU>0.5 with the ground-truth boxes.
"""
"""
We calculate the recall scores for each image in a moving average fashion across the test dataset.
Otherwise, uncomment the following two lines and select batch size = 1 in the config file to view the recall on each individual image.
"""
recall_k_zs, recall_k_per_class_zs, mean_recall_k_zs = None, None, None
self.confidence += self.connectivity
for image in torch.unique(self.which_in_batch): # image-wise
curr_image = self.which_in_batch == image
if self.which_in_batch_target is None:
curr_image_target = image
if self.relation_target[curr_image_target] is None:
continue
else:
curr_image_target = self.which_in_batch_target == image
num_relation_pred = len(self.relation_pred[curr_image])
curr_confidence = self.confidence[curr_image]
sorted_inds = torch.argsort(curr_confidence, dim=0, descending=True)
for i in range(len(self.relation_target[curr_image_target])):
if self.relation_target[curr_image_target][i] == -1: # if target is not connected
continue
if self.args['dataset']['dataset'] == 'vg':
curr_triplet = str(self.subject_cat_target[curr_image_target][i].item()) + '_' + str(self.relation_target[curr_image_target][i].item()) \
+ '_' + str(self.object_cat_target[curr_image_target][i].item())
# search in top k most confident predictions in each image
num_target = torch.sum(self.relation_target[curr_image_target] != -1)
this_k = min(self.top_k[-1], num_relation_pred) # 100
keep_inds = sorted_inds[:this_k]
found = False # found if any one of the three sub-models predict correctly
for j in range(len(keep_inds)): # for each target <subject, relation, object> triple, find any match in the top k confident predictions
if predcls:
label_condition = (self.subject_cat_target[curr_image_target][i] == self.subject_cat_pred[curr_image][keep_inds][j] and
self.object_cat_target[curr_image_target][i] == self.object_cat_pred[curr_image][keep_inds][j])
else:
label_condition = (compare_object_cat(self.subject_cat_target[curr_image_target][i], self.subject_cat_pred[curr_image][keep_inds][j]) and
compare_object_cat(self.object_cat_target[curr_image_target][i], self.object_cat_pred[curr_image][keep_inds][j]))
if label_condition:
sub_iou = self.iou(self.subject_bbox_target[curr_image_target][i], self.subject_bbox_pred[curr_image][keep_inds][j])
obj_iou = self.iou(self.object_bbox_target[curr_image_target][i], self.object_bbox_pred[curr_image][keep_inds][j])
if sub_iou >= self.iou_thresh and obj_iou >= self.iou_thresh:
if self.relation_target[curr_image_target][i] == self.relation_pred[curr_image][keep_inds][j]:
for k in self.top_k:
if j >= k:
continue
self.result_dict[k] += 1.0
if per_class:
self.result_per_class[k][self.relation_target[curr_image_target][i]] += 1.0
# if zero shot
if self.args['dataset']['dataset'] == 'vg':
if curr_triplet in self.zero_shot_triplets:
assert curr_triplet not in self.train_triplets
self.result_dict_zs[k] += 1.0
if per_class:
self.result_per_class_zs[k][self.relation_target[curr_image_target][i]] += 1.0
found = True
if found:
break
self.num_connected_target += 1.0
self.num_conn_target_per_class[self.relation_target[curr_image_target][i]] += 1.0
# if zero shot
if self.args['dataset']['dataset'] == 'vg':
if curr_triplet in self.zero_shot_triplets:
self.num_connected_target_zs += 1.0
self.num_conn_target_per_class_zs[self.relation_target[curr_image_target][i]] += 1.0
recall_k = [self.result_dict[k] / max(self.num_connected_target, 1e-3) for k in self.top_k]
recall_k_per_class = [self.result_per_class[k] / self.num_conn_target_per_class for k in self.top_k]
mean_recall_k = [torch.nanmean(r) for r in recall_k_per_class]
if self.args['dataset']['dataset'] == 'vg':
recall_k_zs = [self.result_dict_zs[k] / max(self.num_connected_target_zs, 1e-3) for k in self.top_k]
recall_k_per_class_zs = [self.result_per_class_zs[k] / self.num_conn_target_per_class_zs for k in self.top_k]
mean_recall_k_zs = [torch.nanmean(r) for r in recall_k_per_class_zs]
return recall_k, recall_k_per_class, mean_recall_k, recall_k_zs, recall_k_per_class_zs, mean_recall_k_zs
def load_annotation_paths(self, annot_path):
self.annotation_paths = None # reset
self.annotation_paths = annot_path
def _get_related_top_k_predictions(self, image, top_k):
curr_image = self.which_in_batch == image
curr_confidence = self.confidence[curr_image]
sorted_inds = torch.argsort(curr_confidence, dim=0, descending=True)
curr_predictions = []
curr_image_graph = []
if self.which_in_batch_target is None:
curr_image_target = image
if self.relation_target[curr_image_target] is None:
return
else:
curr_image_target = self.which_in_batch_target == image
for i in range(0, len(self.subject_cat_target[curr_image_target])):
if self.relation_target[curr_image_target][i] == -1: # if target is not connected
continue
if len(curr_image_graph) >= 15: # enforce efficiency
break
for j in range(min(top_k, len(sorted_inds))):
ind = sorted_inds[j]
subject_id_pred = self.subject_cat_pred[curr_image][ind].item()
object_id_pred = self.object_cat_pred[curr_image][ind].item()
# check if the predicted subject or object matches the target
if (self.subject_cat_target[curr_image_target][i] == subject_id_pred and torch.sum(torch.abs(self.subject_bbox_target[curr_image_target][i] - self.subject_bbox_pred[curr_image][ind])) == 0) \
or (self.object_cat_target[curr_image_target][i] == object_id_pred and torch.sum(torch.abs(self.object_bbox_target[curr_image_target][i] - self.object_bbox_pred[curr_image][ind])) == 0):
relation_id = self.relation_pred[curr_image][ind].item()
string = self.dict_object_names[subject_id_pred] + ' ' + self.dict_relation_names[relation_id] + ' ' + self.dict_object_names[object_id_pred]
if string not in curr_predictions:
# filter the edge by commonsense
edge = [self.subject_bbox_pred[curr_image][ind].cpu().tolist(), relation_id, self.object_bbox_pred[curr_image][ind].cpu().tolist(), self.confidence[curr_image][ind].item(), j]
curr_image_graph.append(edge)
curr_predictions.append(string)
if len(curr_image_graph) >= 10: # enforce efficiency
break
if len(curr_image_graph) > 0:
if self.args['models']['llm_model'] == 'gpt4v':
responses, cache_hits = batch_query_openai_gpt(curr_predictions, self.cache, cache_hits=self.cache_hits, annot_name=self.annotation_paths[image],
sub_bbox=self.subject_bbox_pred[curr_image], obj_bbox=self.object_bbox_pred[curr_image], image_cache=self.image_cache, image_dir=self.args['dataset']['image_dir'])
else: # gpt3.5
responses, cache_hits = batch_query_openai_gpt(curr_predictions, self.cache, cache_hits=self.cache_hits)
# calculate cache hit percentage
self.cache_hits = cache_hits
self.total_cache_queries += len(curr_predictions)
valid_curr_image_graph = []
invalid_curr_image_graph = []
for i, response in enumerate(responses):
if response == 1:
valid_curr_image_graph.append(curr_image_graph[i])
else:
invalid_curr_image_graph.append(curr_image_graph[i])
annot_name = self.annotation_paths[image][:-16] + '_pseudo_annotations.pkl'
if self.args['models']['llm_model'] == 'gpt4v':
valid_annot_path = os.path.join(self.args['dataset']['annot_dir'], 'cs_aligned_top' + str(top_k) + '_gpt4v', annot_name)
invalid_annot_path = os.path.join(self.args['dataset']['annot_dir'], 'cs_violated_top' + str(top_k) + '_gpt4v', annot_name)
else:
valid_annot_path = os.path.join(self.args['dataset']['annot_dir'], 'cs_aligned_top' + str(top_k)+ '_gpt3p5_temp', annot_name)
invalid_annot_path = os.path.join(self.args['dataset']['annot_dir'], 'cs_violated_top' + str(top_k)+ '_gpt3p5_temp', annot_name)
torch.save(valid_curr_image_graph, valid_annot_path)
torch.save(invalid_curr_image_graph, invalid_annot_path)
# print("Saving annotations", annot_name)
return curr_predictions, curr_image_graph
def get_related_top_k_predictions_parallel(self, top_k, save_to_annot=True):
self.dict_relation_names = relation_by_super_class_int2str()
self.dict_object_names = object_class_int2str()
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(lambda image: self._get_related_top_k_predictions(image, top_k), torch.unique(self.which_in_batch)))
cache_hit_percentage = (self.cache_hits / self.total_cache_queries) * 100 if self.total_cache_queries > 0 else 0
if save_to_annot:
top_k_predictions = [item[0] for item in results]
top_k_image_graphs = [item[1] for item in results]
return top_k_predictions, top_k_image_graphs, cache_hit_percentage
def save_visualization_results(self, annot_path, triplets, heights, widths, images, image_depth, bboxes, categories, batch_count, top_k):
dict_relation_names = relation_by_super_class_int2str()
dict_object_names = object_class_int2str()
if self.which_in_batch is None:
return
for image in torch.unique(self.which_in_batch): # image-wise
curr_image = self.which_in_batch == image
curr_confidence = self.confidence[curr_image]
sorted_inds = torch.argsort(curr_confidence, dim=0, descending=True)
# select the top k predictions
this_k = min(top_k, len(self.relation_pred[curr_image]))
keep_inds = sorted_inds[:this_k]
curr_image_graph = []
for ind in keep_inds:
subject_id = self.subject_cat_pred[curr_image][ind].item()
relation_id = self.relation_pred[curr_image][ind].item()
object_id = self.object_cat_pred[curr_image][ind].item()
subject_bbox = self.subject_bbox_pred[curr_image][ind].cpu() / self.feature_size
object_bbox = self.object_bbox_pred[curr_image][ind].cpu() / self.feature_size
height, width = heights[image], widths[image]
subject_bbox[:2] *= height
subject_bbox[2:] *= width
object_bbox[:2] *= height
object_bbox[2:] *= width
subject_bbox = subject_bbox.ceil().int()
object_bbox = object_bbox.ceil().int()
edge = {'edge': dict_object_names[subject_id] + ' ' + dict_relation_names[relation_id] + ' ' + dict_object_names[object_id],
'subject_id': subject_id,
'relation_id': relation_id,
'object_id': object_id,
'bbox_sub': subject_bbox.tolist(),
'bbox_obj': object_bbox.tolist()}
curr_image_graph.append(edge)
vis_results = {'predicted_graph': curr_image_graph,
'image_path': annot_path[image],
'target_graph': triplets[image],
'bboxes': bboxes[image],
'categories': categories[image],
'image': images[image],
'image_depth': image_depth[image],
'height': heights[image],
'width': widths[image]}
# print('vis_results', vis_results)
annot_name = str(batch_count) + '_vis_results.pkl'
annot_path = os.path.join('results/visualization_results/cs', annot_name)
print('annot_path', annot_path)
torch.save(vis_results, annot_path)
def compute_precision(self):
for image in torch.unique(self.which_in_batch): # image-wise
curr_image = self.which_in_batch == image
num_relation_pred = len(self.relation_pred[curr_image])
curr_confidence = self.confidence[curr_image]
sorted_inds = torch.argsort(curr_confidence, dim=0, descending=True)
this_k = min(20, num_relation_pred) # 100
keep_inds = sorted_inds[:this_k]
for i in range(len(self.relation_pred[curr_image][keep_inds])):
found = False # found if any one of the three sub-models predict correctly
found_union = False
for j in range(len(self.relation_target[curr_image])):
if self.relation_target[curr_image][j] == -1: # if target is not connected
continue
if (self.subject_cat_pred[curr_image][keep_inds][i] == self.subject_cat_target[curr_image][j]
and self.object_cat_pred[curr_image][keep_inds][i] == self.object_cat_target[curr_image][j]):
sub_iou = self.iou(self.subject_bbox_pred[curr_image][keep_inds][i], self.subject_bbox_target[curr_image][j])
obj_iou = self.iou(self.object_bbox_pred[curr_image][keep_inds][i], self.object_bbox_target[curr_image][j])
union_iou = self.iou_union(self.subject_bbox_pred[curr_image][keep_inds][i], self.object_bbox_pred[curr_image][keep_inds][i],
self.subject_bbox_target[curr_image][j], self.object_bbox_target[curr_image][j])
if self.relation_pred[curr_image][keep_inds][i] == self.relation_target[curr_image][j]:
if sub_iou >= self.iou_thresh and obj_iou >= self.iou_thresh and found == False:
self.result_per_class_ap[self.relation_pred[curr_image][keep_inds][i]] += 1.0
found = True
if union_iou >= self.iou_thresh and found_union == False:
self.result_per_class_ap_union[self.relation_pred[curr_image][keep_inds][i]] += 1.0
found_union = True
if found and found_union:
break
self.num_conn_target_per_class_ap[self.relation_pred[curr_image][keep_inds][i]] += 1.0
weight = get_weight_oiv6()
precision_per_class = self.result_per_class_ap / self.num_conn_target_per_class_ap
not_nan = torch.logical_not(torch.isnan(precision_per_class))
weighted_mean_precision = torch.nansum(precision_per_class * weight) / torch.sum(weight[not_nan])
precision_per_class_union = self.result_per_class_ap_union / self.num_conn_target_per_class_ap
weighted_mean_precision_union = torch.nansum(precision_per_class_union * weight) / torch.sum(weight[not_nan])
return weighted_mean_precision, weighted_mean_precision_union
def clear_data(self):
self.which_in_batch = None
self.confidence = None
self.connectivity = None
self.relation_pred = None
self.relation_target = None
self.subject_cat_pred = None
self.object_cat_pred = None
self.subject_cat_target = None
self.object_cat_target = None
self.subject_bbox_pred = None
self.object_bbox_pred = None
self.subject_bbox_target = None
self.object_bbox_target = None
def clear_gpt_cache(self):
self.cache = {}
class Evaluator_Top3:
"""
The class evaluate the model performance on Recall@k^{*} and mean Recall@k^{*} evaluation metrics on predicate classification tasks.
If any of the three super-category output heads correctly predicts the relationship, we score it as a match.
Top3 represents three argmax predicate from three disjoint super-categories, instead of the top 3 predicates under a flat classification.
"""
def __init__(self, args, num_classes, iou_thresh, top_k):
self.args = args
self.top_k = top_k
self.num_classes = num_classes
self.iou_thresh = iou_thresh
self.num_connected_target = 0.0
self.motif_total = 0.0
self.motif_correct = 0.0
self.result_dict = {20: 0.0, 50: 0.0, 100: 0.0}
self.result_dict_top1 = {20: 0.0, 50: 0.0, 100: 0.0}
self.result_per_class = {k: torch.tensor([0.0 for i in range(self.num_classes)]) for k in self.top_k}
self.result_per_class_top1 = {k: torch.tensor([0.0 for i in range(self.num_classes)]) for k in self.top_k}
self.num_conn_target_per_class = torch.tensor([0.0 for i in range(self.num_classes)])
self.feature_size = args['models']['feature_size']
self.which_in_batch = None
self.confidence = None
self.connectivity = None
self.relation_pred = None
self.relation_target = None
self.super_relation_pred = None
self.subject_cat_pred = None
self.object_cat_pred = None
self.subject_cat_target = None
self.object_cat_target = None
self.subject_bbox_pred = None
self.object_bbox_pred = None
self.subject_bbox_target = None
self.object_bbox_target = None
def iou(self, bbox_target, bbox_pred):
mask_pred = torch.zeros(self.feature_size, self.feature_size)
mask_pred[int(bbox_pred[2]):int(bbox_pred[3]), int(bbox_pred[0]):int(bbox_pred[1])] = 1
mask_target = torch.zeros(self.feature_size, self.feature_size)
mask_target[int(bbox_target[2]):int(bbox_target[3]), int(bbox_target[0]):int(bbox_target[1])] = 1
intersect = torch.sum(torch.logical_and(mask_target, mask_pred))
union = torch.sum(torch.logical_or(mask_target, mask_pred))
if union == 0:
return 0
else:
return float(intersect) / float(union)
def accumulate(self, which_in_batch, relation_pred, relation_target, super_relation_pred, connectivity,
subject_cat_pred, object_cat_pred, subject_cat_target, object_cat_target,
subject_bbox_pred, object_bbox_pred, subject_bbox_target, object_bbox_target, iou_mask): # size (batch_size, num_relations_classes), (num_relations_classes)
if self.relation_pred is None:
self.which_in_batch = which_in_batch
self.connectivity = connectivity
self.confidence = torch.max(torch.vstack((torch.max(relation_pred[:, :self.args['models']['num_geometric']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']:self.args['models']['num_geometric']+self.args['models']['num_possessive']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']+self.args['models']['num_possessive']:], dim=1)[0])), dim=0)[0] # in log space, [0] to take values
self.confidence[~iou_mask] = -math.inf
self.relation_pred = relation_pred
self.relation_target = relation_target
self.super_relation_pred = super_relation_pred
self.subject_cat_pred = subject_cat_pred
self.object_cat_pred = object_cat_pred
self.subject_cat_target = subject_cat_target
self.object_cat_target = object_cat_target
self.subject_bbox_pred = subject_bbox_pred
self.object_bbox_pred = object_bbox_pred
self.subject_bbox_target = subject_bbox_target
self.object_bbox_target = object_bbox_target
else:
self.which_in_batch = torch.hstack((self.which_in_batch, which_in_batch))
self.connectivity = torch.hstack((self.connectivity, connectivity))
confidence = torch.max(torch.vstack((torch.max(relation_pred[:, :self.args['models']['num_geometric']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']:self.args['models']['num_geometric']+self.args['models']['num_possessive']], dim=1)[0],
torch.max(relation_pred[:, self.args['models']['num_geometric']+self.args['models']['num_possessive']:], dim=1)[0])), dim=0)[0] # in log space, [0] to take values
confidence[~iou_mask] = -math.inf
self.confidence = torch.hstack((self.confidence, confidence))
self.relation_pred = torch.vstack((self.relation_pred, relation_pred))
self.relation_target = torch.hstack((self.relation_target, relation_target))
self.super_relation_pred = torch.vstack((self.super_relation_pred, super_relation_pred))
self.subject_cat_pred = torch.hstack((self.subject_cat_pred, subject_cat_pred))
self.object_cat_pred = torch.hstack((self.object_cat_pred, object_cat_pred))
self.subject_cat_target = torch.hstack((self.subject_cat_target, subject_cat_target))
self.object_cat_target = torch.hstack((self.object_cat_target, object_cat_target))
self.subject_bbox_pred = torch.vstack((self.subject_bbox_pred, subject_bbox_pred))
self.object_bbox_pred = torch.vstack((self.object_bbox_pred, object_bbox_pred))
self.subject_bbox_target = torch.vstack((self.subject_bbox_target, subject_bbox_target))
self.object_bbox_target = torch.vstack((self.object_bbox_target, object_bbox_target))
def global_refine(self, refined_relation, connected_indices_accumulated):
# print('self.relation_pred', self.relation_pred.shape, 'connected_indices_accumulated', connected_indices_accumulated.shape)
# print('self.relation_pred[connected_indices_accumulated]', self.relation_pred[connected_indices_accumulated].shape, 'refined_relation', refined_relation.shape)
self.relation_pred[connected_indices_accumulated, :] = refined_relation
confidence = torch.max(torch.vstack((torch.max(refined_relation[:, :self.args['models']['num_geometric']], dim=1)[0],
torch.max(refined_relation[:, self.args['models']['num_geometric']:self.args['models']['num_geometric'] + self.args['models']['num_possessive']], dim=1)[0],
torch.max(refined_relation[:, self.args['models']['num_geometric'] + self.args['models']['num_possessive']:], dim=1)[0])), dim=0)[0]
self.confidence[connected_indices_accumulated] = confidence
def compute(self, per_class=False):
"""
A ground truth predicate is considered to match a hypothesized relationship iff the predicted relationship is correct,
the subject and object labels match, and the bounding boxes associated with the subject and object both have IOU>0.5 with the ground-truth boxes.
"""
self.confidence += self.connectivity
for image in torch.unique(self.which_in_batch): # image-wise
curr_image = self.which_in_batch == image
num_relation_pred = len(self.relation_pred[curr_image])
curr_confidence = self.confidence[curr_image]
sorted_inds = torch.argsort(curr_confidence, dim=0, descending=True)
for i in range(len(self.relation_target[curr_image])):
if self.relation_target[curr_image][i] == -1: # if target is not connected
continue
# search in top k most confident predictions in each image
num_target = torch.sum(self.relation_target[curr_image] != -1)
this_k = min(self.top_k[-1], num_relation_pred) # 100
keep_inds = sorted_inds[:this_k]
found = False # found if any one of the three sub-models predict correctly
found_top1 = False # found if only the most confident one of the three sub-models predict correctly
for j in range(len(keep_inds)): # for each target <subject, relation, object> triple, find any match in the top k confident predictions
if (self.subject_cat_target[curr_image][i] == self.subject_cat_pred[curr_image][keep_inds][j]
and self.object_cat_target[curr_image][i] == self.object_cat_pred[curr_image][keep_inds][j]):
sub_iou = self.iou(self.subject_bbox_target[curr_image][i], self.subject_bbox_pred[curr_image][keep_inds][j])
obj_iou = self.iou(self.object_bbox_target[curr_image][i], self.object_bbox_pred[curr_image][keep_inds][j])
if sub_iou >= self.iou_thresh and obj_iou >= self.iou_thresh:
if not found:
relation_pred_1 = self.relation_pred[curr_image][keep_inds][j][:self.args['models']['num_geometric']] # geometric
relation_pred_2 = self.relation_pred[curr_image][keep_inds][j][self.args['models']['num_geometric']:self.args['models']['num_geometric']
+ self.args['models']['num_possessive']] # possessive
relation_pred_3 = self.relation_pred[curr_image][keep_inds][j][self.args['models']['num_geometric'] + self.args['models']['num_possessive']:] # semantic
if self.relation_target[curr_image][i] == torch.argmax(relation_pred_1) \
or self.relation_target[curr_image][i] == torch.argmax(relation_pred_2) + self.args['models']['num_geometric'] \
or self.relation_target[curr_image][i] == torch.argmax(relation_pred_3) + self.args['models']['num_geometric'] + self.args['models']['num_possessive']:
for k in self.top_k:
if j >= max(k, num_target):
continue
self.result_dict[k] += 1.0
if per_class:
self.result_per_class[k][self.relation_target[curr_image][i]] += 1.0
found = True
if not found_top1:
curr_super = torch.argmax(self.super_relation_pred[curr_image][keep_inds][j])
relation_preds = [torch.argmax(self.relation_pred[curr_image][keep_inds][j][:self.args['models']['num_geometric']]),
torch.argmax(self.relation_pred[curr_image][keep_inds][j][self.args['models']['num_geometric']:self.args['models']['num_geometric']
+ self.args['models']['num_possessive']]) + self.args['models']['num_geometric'],
torch.argmax(self.relation_pred[curr_image][keep_inds][j][self.args['models']['num_geometric'] + self.args['models']['num_possessive']:])
+ self.args['models']['num_geometric'] + self.args['models']['num_possessive']]
if self.relation_target[curr_image][i] == relation_preds[curr_super]:
for k in self.top_k:
if j >= max(k, num_target):
continue
self.result_dict_top1[k] += 1.0
if per_class:
self.result_per_class_top1[k][self.relation_target[curr_image][i]] += 1.0
found_top1 = True
if found and found_top1:
break
self.num_connected_target += 1.0
self.num_conn_target_per_class[self.relation_target[curr_image][i]] += 1.0
recall_k = [self.result_dict[k] / max(self.num_connected_target, 1e-3) for k in self.top_k]
recall_k_per_class = [self.result_per_class[k] / self.num_conn_target_per_class for k in self.top_k]
mean_recall_k = [torch.nanmean(r) for r in recall_k_per_class]
# recall_k_top1 = [self.result_dict_top1[k] / self.num_connected_target for k in self.top_k]
# mean_recall_k_top1 = [torch.nanmean(r) for r in recall_k_per_class_top1]
return recall_k, recall_k_per_class, mean_recall_k
def clear_data(self):
self.which_in_batch = None
self.confidence = None
self.relation_pred = None
self.connectivity = None
self.relation_target = None
self.subject_cat_pred = None
self.object_cat_pred = None
self.subject_cat_target = None
self.object_cat_target = None
self.subject_bbox_pred = None
self.object_bbox_pred = None
self.subject_bbox_target = None
self.object_bbox_target = None