-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysis_03.py
41 lines (37 loc) · 2.11 KB
/
Analysis_03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import matplotlib.pyplot as pp
import pandas as pd
import time as t
import numpy as np
from tqdm import tqdm
from BanditMachine import BanditMachine
from Experiment import run_experiment
from Insanity.Initializers import OptimisticInitializer, ZeroInitializer
from ActionValuesProvider import ActionValuesProvider
from Context import ctx, use_context
from munch import munchify
%matplotlib inline
#───────────────────────────────────────────────────────────────────────
# Experiment Start
#───────────────────────────────────────────────────────────────────────
use_context(3)
before = t.perf_counter()
rewards, percent_optimals = run_experiment()
print("time (seconds): {0}".format(t.perf_counter() - before))
#───────────────────────────────────────────────────────────────────────
# Plotting
#───────────────────────────────────────────────────────────────────────
labels = ["ε={0}{1}".format(ε, (" UCB (c=2)" if ε == 0 else " (greedy)")) for ε in ctx().εs]
pp.figure(figsize=(10,4))
[pp.plot(rewards[i], label=labels[i]) for i in range(len(ctx().εs))]
pp.legend(bbox_to_anchor=(1.2, 0.5))
pp.xlabel("Steps")
pp.ylabel("Average Reward")
pp.title("Average ε-greedy Rewards over " + str(ctx().num_runs) + " Runs")
pp.show()
pp.figure(figsize=(10,4))
[pp.plot(percent_optimals[i], label=labels[i]) for i in range(len(ctx().εs))]
pp.legend(bbox_to_anchor=(1.2, 0.5))
pp.xlabel("Steps")
pp.ylabel("% Optimal Action")
pp.title("% times optical action selected averaged over " + str(ctx().num_runs) + " Runs")
pp.show()