-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDecisionTree.py
170 lines (148 loc) · 5.69 KB
/
DecisionTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python2
# encoding: utf-8
"""
@author: blownhither@github
@license: Apache Licence
@time: 7/17/17 9:50 PM
"""
from collections import Counter
import numpy as np
class DecisionTree:
def __init__(self):
self.x = None # train set
self.y = None
self.validation_x = None # validation set
self.validation_y = None
self.dim = None # shape info
self.size = None
self.head = None # tree head
def fit(self, x, y):
"""
Fit a decision tree with given x and y
:param x: row-wise discrete data
:param y: class label, ranging from 0...n
"""
x = np.array(x)
y = np.array(y)
index = np.arange(len(x), dtype=np.int) # shuffle and split validation set
np.random.shuffle(index)
split = np.int(np.floor(len(index) * 0.95))
self.x = x[index[:split]]
self.y = y[index[:split]]
self.validation_x = x[index[:split]]
self.validation_y = y[index[:split]]
self.dim = self.x.shape[1] # shape information
self.size = self.x.shape[0]
data_idx = np.arange(self.size, dtype=np.int) # start generating decision tree
dim_idx = np.arange(self.dim, dtype=np.int)
self.head = self._generate(data_idx, dim_idx)
def _generate(self, data_idx, dim_idx):
"""
generate (sub)tree
:param data_idx: index of dataset, try to save space
:param dim_mask: mask of dim
:return:
"""
# case 1, same label for all samples
case1 = True
labels = self.y[data_idx]
temp = labels[0]
node = DecisionTreeNode() # new node to be returned
for l in labels:
if l != temp:
case1 = False
break
if case1 is True:
node.leaf = True # new node is a leaf
node.label = temp # assign new node to the only label
return node
# case 2, same value for all attributes
if len(dim_idx) == 0 or self._same_attribute_value(data_idx, dim_idx):
node.leaf = True # new node is leaf
node.label = self._most_frequent(labels) # assign new node to the most frequent label
return node
# case 3, split on one optimal dimension to generate subtree
div_dim = self._best_division(data_idx, dim_idx, labels)
data = self.x[data_idx, div_dim]
node.children = []
node.attribute_value = []
node.leaf = False # new node is not leaf
node.dim = div_dim # split on optimal dim
for value in set(data):
# TODO: pre-stored data col values should improve efficiency
new_data_idx = data_idx[np.where(value == data)]
# new_labels = self.y[new_data_idx]
new_dim_idx = [x for x in dim_idx if x != div_dim]
new_node = self._generate(new_data_idx, new_dim_idx)
node.children.append(new_node)
node.attribute_value.append(value)
if not len(node.children) > 1:
self._same_attribute_value(data_idx, dim_idx)
return node
@staticmethod
def _most_frequent(labels):
return np.argmax(np.bincount(labels))
def _same_attribute_value(self, data_idx, dim_idx):
for col in dim_idx:
temp = self.x[data_idx[0], col]
for row in data_idx:
if self.x[row, col] != temp:
return False
return True
def _best_division(self, data_idx, dim_idx, labels):
"""
Use Gini index to choose one best dimension to split on
:return: dimension index
"""
arg = np.argmin([self._gini_index(data_idx, d, labels) for d in dim_idx])
return dim_idx[arg]
def _gini_index(self, data_idx, dim, labels):
n = len(data_idx)
data = self.x[data_idx, dim]
counter = Counter(data)
ans = 0.0
for key, value in counter.iteritems():
ans += self._gini(labels[data == key]) * value
return ans / n
@staticmethod
def _gini(x):
return 1 - np.linalg.norm(np.array(Counter(x).values(), dtype=np.float)) / float(len(x) ** 2)
def print_tree(self):
stack = [self.head]
while stack:
temp = []
s = ""
for node in stack:
s += str(node)
if node.children:
temp.extend(node.children)
print(s)
stack = temp
class DecisionTreeNode:
def __init__(self):
self.dim = None # divide on a dim if not leaf
self.leaf = False # whether node is leaf
self.label = None # label can be decided if node is leaf
self.children = None # a dict mapping attribute value to children
self.attribute_value = None # attribute value for each children
def __str__(self):
if self.leaf is True:
return 'Label: %d ' % self.label
else:
s = 'Dim: %d\n' % self.dim
for v in self.attribute_value:
s += str(v) + ' '
return s
def test_dt():
dt = DecisionTree()
import pandas as pds
df = pds.read_csv('Dataset/watermelon-tiny.csv')
x = np.array(df[df.columns[1:-3]])
y = np.array(df[df.columns[-1]])
dt.fit(x, y)
# dt.print_tree()
# to use plot_tree you need to install graphviz and pygraphviz
from Util.plot_tree import plot_tree
plot_tree(dt.head, 'tmp/tree.png')
if __name__ == '__main__':
test_dt()