From b64f112488115be41ed4bbbeb9ef7b6e54eca788 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Louf?= Date: Tue, 17 Jan 2023 15:26:44 +0100 Subject: [PATCH] Remove the sparse logistic regression example --- docs/examples.rst | 1 - docs/examples/SparseLogisticRegression.md | 133 ---------------------- 2 files changed, 134 deletions(-) delete mode 100644 docs/examples/SparseLogisticRegression.md diff --git a/docs/examples.rst b/docs/examples.rst index 2439b658f..58ce8663b 100644 --- a/docs/examples.rst +++ b/docs/examples.rst @@ -7,7 +7,6 @@ Examples examples/Introduction.md examples/LogisticRegression.md examples/LogisticRegressionWithLatentGaussianSampler.md - examples/SparseLogisticRegression.md examples/TemperedSMC.md examples/PeriodicOrbitalMCMC.md examples/GP_EllipticalSliceSampler.md diff --git a/docs/examples/SparseLogisticRegression.md b/docs/examples/SparseLogisticRegression.md deleted file mode 100644 index d8c1bbd2b..000000000 --- a/docs/examples/SparseLogisticRegression.md +++ /dev/null @@ -1,133 +0,0 @@ ---- -jupytext: - text_representation: - extension: .md - format_name: myst - format_version: 0.13 - jupytext_version: 1.13.1 -kernelspec: - display_name: Python 3 (ipykernel) - language: python - name: python3 -mystnb: - execution_timeout: 300 ---- - -# Sparse logistic regression - -This example models a logistic regression with hierarchies on the scale of the independent variable's parameters that function as a proxy for variable selection. We give the independent variable's regressors $\beta$ a prior mean of 0 and global $\tau$ and local $\lambda$ scale parameters with strong prior information around 0, thus allowing these parameters to a posteriori degenerate at 0, hence excluding its independent variable from the model. These type of hierarchies on the prior scale of a parameter create funnel geometries that are hard to efficiently explore without local or global structure of the target. - -The model is run on its non-centered parametrization \citep{papaspiliopoulos2007general} with data from the numerical version of the [German credit dataset](https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)). The target posterior is defined by its likelihood - -$$ -L(\mathbf{y}|\beta, \lambda, \tau) = \prod_i \text{Beta}(y_i;\sigma((\tau \lambda \odot \beta)^T X_i)) -$$ - -with $\sigma$ the sigmoid function, and prior - -$$ -\pi_0(\beta, \lambda, \tau) = \text{Gamma}(\tau;1/2, 1/2)\prod_i \mathcal{N}(\beta_i;0, 1)\text{Gamma}(\lambda_i;1/2, 1/2) -$$ - -```{code-cell} python -:tags: [remove-stderr] - -import jax -import jax.numpy as jnp -import jax.random as jrnd -import numpy as np -import pandas as pd -from jax.scipy.special import expit -from jax.scipy.stats import bernoulli, gamma, norm -from numpyro.diagnostics import print_summary - -import blackjax - - -class HorseshoeLogisticReg: - def __init__(self, X, y) -> None: - self.X = X - self.y = y - - def initialize_model(self, rng_key, n_chain): - kb, kl, kt = jax.random.split(rng_key, 3) - self.init_params = { - "beta": jax.random.normal(kb, (n_chain, self.X.shape[1])), - "lamda": jax.random.normal(kl, (n_chain, self.X.shape[1])), - "tau": jax.random.normal(kt, (n_chain,)), - } - - def logdensity(self, beta, lamda, tau): # non-centered - # priors - lprob = ( - jnp.sum( - norm.logpdf(beta, loc=0.0, scale=1.0) - + gamma.logpdf(jnp.exp(lamda), a=0.5, loc=0.0, scale=2.0) - + lamda - ) - + gamma.logpdf(jnp.exp(tau), a=0.5, loc=0.0, scale=2.0) - + tau - ) - # likelihood - logit = jnp.sum(self.X * (jnp.exp(tau) * beta * jnp.exp(lamda)), axis=1) - p = jnp.clip(expit(logit), a_min=1e-6, a_max=1 - 1e-6) - lprob += jnp.sum(bernoulli.logpmf(self.y, p)) - return lprob - - def logdensity_fn(self, x): - return self.logdensity(**x) - - -def inference_loop(rng, init_state, kernel, n_iter): - keys = jrnd.split(rng, n_iter) - - def step(state, key): - state, info = kernel(key, state) - return state, (state, info) - - _, (states, info) = jax.lax.scan(step, init_state, keys) - return states, info - - -url = "https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data-numeric" -data = pd.read_table(url, header=None, delim_whitespace=True) -y = -1 * (data.iloc[:, -1].values - 2) -X = ( - data.iloc[:, :-1] - .apply(lambda x: -1 + (x - x.min()) * 2 / (x.max() - x.min()), axis=0) - .values -) -X = np.concatenate([np.ones((1000, 1)), X], axis=1) -N_OBS, N_REG = X.shape - -N_PARAM = N_REG * 2 + 1 -dist = HorseshoeLogisticReg(X, y) - -[n_chain, n_warm, n_iter] = [128, 20000, 10000] -ksam, kinit = jrnd.split(jrnd.PRNGKey(0), 2) -dist.initialize_model(kinit, n_chain) - -tic1 = pd.Timestamp.now() -k_warm, k_sample = jrnd.split(ksam) -warmup = blackjax.meads_adaptation(dist.logdensity_fn, n_chain) -adaptation_results, _ = warmup.run(k_warm, dist.init_params, n_warm) -init_state = adaptation_results.state -kernel = blackjax.ghmc(dist.logdensity_fn, **adaptation_results.parameters).step - - -def one_chain(k_sam, init_state): - state, info = inference_loop(k_sam, init_state, kernel, n_iter) - return state.position, info - - -k_sample = jrnd.split(k_sample, n_chain) -samples, infos = jax.vmap(one_chain)(k_sample, init_state) -tic2 = pd.Timestamp.now() -print("Runtime for MEADS", tic2 - tic1) -``` - -```{code-cell} python -:tags: [hide-input] - -print_summary(samples) -```