-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathobjecthash.py
232 lines (192 loc) · 5.55 KB
/
objecthash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import json
import hashlib
import math
import random
import types
import unicodedata
from binascii import hexlify as hexify, unhexlify as unhexify
def hash_fn():
return hashlib.sha256()
def hash_primitive(t, b):
#print hexify(t), hexify(b)
m = hash_fn()
m.update(t)
m.update(b)
t = m.digest()
#print '=', hexify(t)
return t
# We need this class because otherwise we can't put a list in a set.
class FrozenList(object):
def __init__(self, l):
self.l = tuple(l)
def __getitem__(self, key):
return self.l[key]
def __hash__(self):
return hash(self.l)
def __eq__(self, other):
return self.l == other.l
def __len__(self):
return len(self.l)
def obj_hash_bool(b):
return hash_primitive('b', '1' if b else '0')
def obj_hash_list(l):
h = ''
for o in l:
h += obj_hash(o)
return hash_primitive('l', h)
def obj_hash_dict(d):
h = ''
kh = [obj_hash(k) + obj_hash(v) for (k, v) in d.items()]
for v in sorted(kh):
h += v
return hash_primitive('d', h)
def obj_hash_unicode(u):
return hash_primitive('u', u.encode('utf-8'))
def float_normalize(f):
# special case 0
# Note that if we allowed f to end up > .5 or == 0, we'd get the same thing
if f == 0.0:
return '+0:'
# sign
s = '+'
if f < 0:
s = '-'
f = -f
# exponent
e = 0
while f > 1:
f /= 2
e += 1
while f <= .5:
f *= 2
e -= 1
s += str(e) + ':'
# mantissa
assert f <= 1
assert f > .5
while f:
if f >= 1:
s += '1'
f -= 1
else:
s += '0'
assert f < 1
assert len(s) < 1000
f *= 2
return s
def obj_hash_float(f):
if math.isnan(f):
return hash_primitive('f', 'NaN')
elif math.isinf(f):
return hash_primitive('f', 'Infinity' if f > 0 else '-Infinity')
else:
return hash_primitive('f', float_normalize(f))
def obj_hash_int(i):
return hash_primitive('i', str(i))
def obj_hash_set(s):
h = []
for e in s:
h.append(obj_hash(e))
r = ''
for t in sorted(h):
r += t
return hash_primitive('s', r)
class Redacted(object):
def __init__(self, hash):
self.hash = unhexify(hash)
class RedactedObject(Redacted):
def __init__(self, o):
self.hash = obj_hash(o)
def obj_hash(o):
if type(o) is list or type(o) is FrozenList:
return obj_hash_list(o)
elif type(o) is dict:
return obj_hash_dict(o)
elif type(o) is unicode:
return obj_hash_unicode(o)
elif type(o) is float:
return obj_hash_float(o)
elif type(o) is int:
return obj_hash_int(o)
elif type(o) is str:
return obj_hash_unicode(unicode(o))
elif type(o) is set or type(o) is frozenset:
return obj_hash_set(o)
elif type(o) is bool:
return obj_hash_bool(o)
elif isinstance(o, Redacted):
return o.hash
elif o is None:
return hash_primitive('n', '')
print type(o)
assert False
def is_primitive_type(t):
return t is str or t is unicode or t is float or t is int or t is bool or t is types.NoneType
class ApplyToLeaves(object):
def __init__(self, leaf_fn, restrict = None):
self.leaf_fn = leaf_fn
self.restrict = restrict
def __call__(self, o):
t = type(o)
if t is dict:
return {self(k): self(v) for (k,v) in o.items()}
elif t is list:
return [self(e) for e in o]
elif t is set:
return set([self(e) for e in o])
elif is_primitive_type(t):
if self.restrict:
if t in self.restrict:
return self.leaf_fn(o)
return o
else:
return self.leaf_fn(o)
print type(o)
assert False
commonize = ApplyToLeaves(lambda o: float(o), (int,))
def json_hash(j, fns=()):
t = json.loads(j)
for f in fns:
t = f(t)
return obj_hash(t)
def redactize_unicode(u):
if u.startswith('**REDACTED**'):
return Redacted(u[12:])
return u
redactize = ApplyToLeaves(redactize_unicode, (str, unicode))
class ApplyToLeavesAndKeys(ApplyToLeaves):
def __init__(self, leaf_fn, key_fn):
ApplyToLeaves.__init__(self, leaf_fn)
self.key_fn = key_fn
def __call__(self, o):
if type(o) is dict:
return {self.key_fn(k): self(v) for (k, v) in o.items()}
return ApplyToLeaves.__call__(self, o)
def redactable_entity(e):
return FrozenList((redactable_rand(), e))
def redactable_key(k):
return redactable_rand() + k
def redactable_rand():
r = ''
for x in range(32):
r += chr(random.SystemRandom().getrandbits(8))
return hexify(r)
redactable = ApplyToLeavesAndKeys(redactable_entity, redactable_key)
class ApplyUnredactable(ApplyToLeavesAndKeys):
def __init__(self):
ApplyToLeavesAndKeys.__init__(self, None, lambda k: k[32:])
def __call__(self, o):
t = type(o)
if (t is list or t is FrozenList) and len(o) == 2 and type(o[0]) is str:
assert is_primitive_type(type(o[1]))
return o[1]
return ApplyToLeavesAndKeys.__call__(self, o)
unredactable = ApplyUnredactable()
def _unicode_normalize(u):
return unicodedata.normalize('NFC', u)
def unicode_normalize_entity(e):
if type(e) is unicode:
return _unicode_normalize(e)
assert type(e) is str
return _unicode_normalize(unicode(e))
unicode_normalize = ApplyToLeaves(unicode_normalize_entity, (str, unicode))