-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgw.py
93 lines (73 loc) · 4.06 KB
/
gw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Classes and functions for calculating GW spectra from FOPT, PBH, etc.
from pypt.ftpot import VFT
from .constants import *
from .bubble_nucleation import *
class GravitationalWave:
def __init__(self, alpha=0.1, betaByHstar=1000.0, vw=0.9, Tstar=1000.0, gstar_D=4.5):
self.alpha = alpha
self.betaByHstar = betaByHstar
self.vw = vw
self.Tstar = Tstar
self.gstar_D = gstar_D
def kappa(self):
alpha = self.alpha
vw = self.vw
cs = 1/sqrt(3)
vJ = (sqrt(2*alpha/3 + alpha**2) + sqrt(1/3))/(1+alpha)
kA = power(vw, 6/5) * 6.9*alpha / (1.36 - 0.037*sqrt(alpha) + alpha)
kB = power(alpha, 2/5) / (0.017 + power(0.997 + alpha, 2/5))
kC = sqrt(alpha) / (0.135 + sqrt(0.98 + alpha))
kD = alpha / (0.73 + 0.083*sqrt(alpha) + alpha)
deltaK = -0.9*log(sqrt(alpha)/(1+sqrt(alpha)))
if vw < cs:
return power(cs, 11/5) * kA * kB / ((power(cs, 11/5) - power(vw, 11/5))*kB + vw*kA*power(cs, 6/5))
elif vw > vJ:
return (power(vJ - 1, 3)*power(vJ, 5/2)*power(vw,-5/2)*kC*kD)/((power(vJ-1,3) - power(vw-1,3))*power(vJ,5/2)*kC + power(vw-1,3)*kD)
else:
return kB + (vw-cs)*deltaK + power((vw-cs)/(vJ-cs), 3) * (kC - kB -(vJ - cs)*deltaK)
### Gravitational Wave Spectra Params
def hstar_param(self):
return 1.65e-5 * (self.Tstar/100.0) * power((self.gstar_D + gstar_sm(self.Tstar))/100, 1/6)
def f_peak_sw(self):
# returns peak frequency in Hz
# Tstar in GeV
return (1.9e-5 / self.vw) * self.betaByHstar * (self.Tstar / 1.0e2) * power(GSTAR_SM/100, 1/6)
def f_peak_col(self):
return (0.62/(1.8 - 0.1*self.vw + self.vw**2)) * self.betaByHstar * self.hstar_param()
def f_peak_turb(self):
return 1.64*self.betaByHstar*self.hstar_param()/self.vw
def sw(self, f):
# spectral function for the sound wave piece
return power(f/self.f_peak_sw(), 3) * power(7/(4 + 3*power(f/self.f_peak_sw(), 2)), 7/2)
def sw_col(self, f):
# spectral function for the collisional piece
hstar = 1.65e-5 * (self.Tstar/100.0) * power((self.gstar_D + gstar_sm(self.Tstar))/100, 1/6)
f_col = (0.62/(1.8 - 0.1*self.vw + self.vw**2)) * self.betaByHstar * hstar
return ((0.11*self.vw**3)/(0.42 + self.vw**2)) * ((3.8*power(f/f_col, 2.8))/(1 + 2.8*power(f/f_col, 3.8)))
def sw_turb(self, f):
# spectral function for the turbulence piece
hstar = 1.65e-5 * (self.Tstar/100.0) * power((self.gstar_D + gstar_sm(self.Tstar))/100, 1/6)
f_turb = 1.64*self.betaByHstar*hstar/self.vw
return power(f/f_turb, 3)/(power(1 + f/f_turb, 11/3)*(1 + 8*pi*f/hstar))
def omega_sw(self, f):
# return the gravitational wave energy budget from sound waves
kappa = self.kappa()
alpha = self.alpha
return 8.5e-6 * self.sw(f) * power(100/gstar_sm(self.Tstar), 1/3) * power(kappa*alpha / (1+alpha), 2) * self.vw / self.betaByHstar
def omega_turb(self, f):
# return the gravitational wave energy budget from turbulence
kappa = 0.05*self.kappa()
return 3.35e-4 * self.vw * (1/self.betaByHstar) * power(100/(self.gstar_D + gstar_sm(self.Tstar)), 1/3) \
* power(kappa*self.alpha / (1+self.alpha), 3/2) * self.sw_col(f)
def omega_col(self, f):
# return the gravitational wave energy budget from collisions
kappa = np.clip(1 - self.kappa() - 0.05*self.kappa(), a_min=0.0, a_max=1.0)
return 1.67e-5 * power(1/self.betaByHstar, 2) * power(100/(self.gstar_D + gstar_sm(self.Tstar)), 1/3) \
* power(kappa*self.alpha / (1+self.alpha), 2) * self.sw_col(f)
def omega(self, f):
return self.omega_sw(f) + self.omega_col(f) + self.omega_turb(f)
def f_peak(self):
peak_fs = [self.f_peak_sw(), self.f_peak_col(), self.f_peak_turb()]
peaks = [self.omega_sw(self.f_peak_sw()), self.omega_col(self.f_peak_col()), self.omega_turb(self.f_peak_turb())]
max_peak_idx = np.argmax(peaks)
return peak_fs[max_peak_idx]