-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathradfield.cc
1272 lines (1067 loc) · 49.7 KB
/
radfield.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "radfield.h"
#include <gsl/gsl_errno.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_roots.h>
#include <gsl/gsl_sf_debye.h>
#include <mpi.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <span>
#include <tuple>
#include <vector>
#include "artisoptions.h"
#include "atomic.h"
#include "constants.h"
#include "globals.h"
#include "grid.h"
#include "ratecoeff.h"
#include "rpkt.h"
#include "sn3d.h"
namespace radfield {
namespace {
std::vector<double> J_normfactor;
struct RadFieldBinSolution {
// these two parameters are used in the current timestep, but were calculated
// from the values of J and nuJ in the previous timestep
float W; // dilution (scaling) factor
float T_R; // radiation temperature
};
struct RadFieldBin {
double J_raw; // value needs to be multiplied by J_normfactor to get the true value
double nuJ_raw;
int contribcount;
};
constexpr double radfieldbins_delta_nu =
(nu_upper_last_initial - nu_lower_first_initial) / (RADFIELDBINCOUNT - 1); // - 1 for the top super bin
RadFieldBin *radfieldbins{};
RadFieldBinSolution *radfieldbin_solutions{};
MPI_Win win_radfieldbin_solutions = MPI_WIN_NULL;
MPI_Win win_prev_bfrate_normed = MPI_WIN_NULL;
struct Jb_lu_estimator {
double value = 0.;
int contribcount = 0;
};
int detailed_linecount = 0;
// array of indices into the linelist[] array for selected lines
std::vector<int> detailed_lineindicies;
std::vector<std::vector<Jb_lu_estimator>> prev_Jb_lu_normed{}; // value from the previous timestep
std::vector<std::vector<Jb_lu_estimator>> Jb_lu_raw{}; // unnormalised estimator for the current timestep
std::span<float> prev_bfrate_normed{}; // values from the previous timestep
std::vector<double> bfrate_raw; // unnormalised estimators for the current timestep
// expensive debugging mode to track the contributions to each bound-free rate estimator
std::vector<double> J; // after normalisation: [ergs/s/sr/cm2/Hz]
#ifdef DO_TITER
std::vector<double> J_reduced_save;
#endif
// J and nuJ are accumulated and then normalised in-place
// i.e. be sure the normalisation has been applied (exactly once) before using the values here!
std::vector<double> nuJ;
#ifdef DO_TITER
std::vector<double> nuJ_reduced_save;
#endif
struct gsl_planck_integral_paras {
double T_R;
bool times_nu;
};
struct GSLT_RSolverParams {
int nonemptymgi;
int binindex;
};
FILE *radfieldfile{};
constexpr auto get_bin_nu_upper(const int binindex) -> double {
assert_testmodeonly(binindex < RADFIELDBINCOUNT);
if (binindex == RADFIELDBINCOUNT - 1) {
return nu_upper_superbin;
}
return nu_lower_first_initial + ((binindex + 1) * radfieldbins_delta_nu);
}
constexpr auto get_bin_nu_lower(const int binindex) -> double {
if (binindex > 0) {
return get_bin_nu_upper(binindex - 1);
}
return nu_lower_first_initial;
}
// find the left-closed bin [nu_lower, nu_upper) that nu belongs to
constexpr auto select_bin(const double nu) -> int {
if (nu < nu_lower_first_initial) {
return -2; // out of range, nu lower than lowest bin's lower boundary
}
if (nu >= nu_upper_superbin) {
// out of range, nu higher than highest bin's upper boundary
return -1;
}
if (nu >= nu_upper_last_initial) {
// in the superbin. separate case because the delta_nu is different to the other bins
return RADFIELDBINCOUNT - 1;
}
const int binindex = static_cast<int>((nu - nu_lower_first_initial) / radfieldbins_delta_nu);
if (nu == get_bin_nu_upper(binindex)) {
// exactly on the upper boundary of the bin, so add 1 to ensure we get the left-closed bin
return binindex + 1;
}
return binindex;
}
// associate a Jb_lu estimator with a particular lineindex to be used
// instead of the general radiation field model
void add_detailed_line(const int lineindex) {
detailed_linecount++;
for (int nonemptymgi = 0; nonemptymgi < grid::get_nonempty_npts_model(); nonemptymgi++) {
prev_Jb_lu_normed[nonemptymgi].push_back({.value = 0, .contribcount = 0});
assert_always(detailed_linecount == std::ssize(prev_Jb_lu_normed[nonemptymgi]));
// zero_estimators should do the next part anyway, but just to be sure:
Jb_lu_raw[nonemptymgi].push_back({.value = 0, .contribcount = 0});
assert_always(detailed_linecount == std::ssize(Jb_lu_raw[nonemptymgi]));
}
detailed_lineindicies.push_back(lineindex);
assert_always(detailed_linecount == std::ssize(detailed_lineindicies));
}
// get the normalised J_nu
auto get_bin_J(const int nonemptymgi, const int binindex) -> double {
assert_testmodeonly(J_normfactor[nonemptymgi] > 0.0);
assert_testmodeonly(binindex >= 0);
assert_testmodeonly(binindex < RADFIELDBINCOUNT);
return radfieldbins[(static_cast<ptrdiff_t>(nonemptymgi) * RADFIELDBINCOUNT) + binindex].J_raw *
J_normfactor[nonemptymgi];
}
auto get_bin_nuJ(const int nonemptymgi, const int binindex) -> double {
assert_testmodeonly(J_normfactor[nonemptymgi] > 0.0);
assert_testmodeonly(binindex >= 0);
assert_testmodeonly(binindex < RADFIELDBINCOUNT);
return radfieldbins[(static_cast<ptrdiff_t>(nonemptymgi) * RADFIELDBINCOUNT) + binindex].nuJ_raw *
J_normfactor[nonemptymgi];
}
// get <nuJ> / <J> for a bin
auto get_bin_nu_bar(const int nonemptymgi, const int binindex) -> double {
const double nuJ_sum = get_bin_nuJ(nonemptymgi, binindex);
const double J_sum = get_bin_J(nonemptymgi, binindex);
return nuJ_sum / J_sum;
}
auto get_bin_contribcount(const int nonemptymgi, const int binindex) -> int {
return radfieldbins[(nonemptymgi * RADFIELDBINCOUNT) + binindex].contribcount;
}
auto get_bin_W(const int nonemptymgi, const int binindex) -> float {
return radfieldbin_solutions[(nonemptymgi * RADFIELDBINCOUNT) + binindex].W;
}
auto get_bin_T_R(const int nonemptymgi, const int binindex) -> float {
return radfieldbin_solutions[(nonemptymgi * RADFIELDBINCOUNT) + binindex].T_R;
}
constexpr auto gsl_integrand_planck(const double nu, void *voidparas) -> double {
const auto *paras = static_cast<gsl_planck_integral_paras *>(voidparas);
const auto T_R = paras->T_R;
double integrand = TWOHOVERCLIGHTSQUARED * std::pow(nu, 3) / (std::expm1(HOVERKB * nu / T_R));
if (paras->times_nu) {
integrand *= nu;
}
return integrand;
}
void update_bfestimators(const int nonemptymgi, const double distance_e_cmf, const double nu_cmf,
const double doppler_nucmf_on_nurf, const Phixslist &phixslist) {
assert_testmodeonly(DETAILED_BF_ESTIMATORS_ON);
const double distance_e_cmf_over_nu =
distance_e_cmf / nu_cmf * doppler_nucmf_on_nurf; // TODO: Luke: why did I put a doppler factor here?
// I think the nu_cmf slightly differs from when the phixslist was calculated
// so the nu condition on this nu_cmf can truncate the list further compared to what was used in the calculation
// of phixslist.gamma_contr
const auto bfestimend = std::upper_bound(globals::bfestim_nu_edge.data(),
globals::bfestim_nu_edge.data() + phixslist.bfestimend, nu_cmf) -
globals::bfestim_nu_edge.data();
const auto bfestimbegin = std::lower_bound(globals::bfestim_nu_edge.data() + phixslist.bfestimbegin,
globals::bfestim_nu_edge.data() + bfestimend, nu_cmf,
[](const double nu_edge, const double find_nu_cmf) {
return nu_edge * last_phixs_nuovernuedge < find_nu_cmf;
}) -
globals::bfestim_nu_edge.data();
const auto bfestimcount = globals::bfestimcount;
for (auto bfestimindex = bfestimbegin; bfestimindex < bfestimend; bfestimindex++) {
atomicadd(bfrate_raw[(nonemptymgi * bfestimcount) + bfestimindex],
phixslist.gamma_contr[bfestimindex] * distance_e_cmf_over_nu);
}
}
auto planck_integral(const double T_R, const double nu_lower, const double nu_upper, const bool times_nu) -> double {
double integral = 0.;
double error = 0.;
const double epsrel = 1e-10;
const double epsabs = 0.;
const gsl_planck_integral_paras intparas = {.T_R = T_R, .times_nu = times_nu};
gsl_error_handler_t *previous_handler = gsl_set_error_handler(gsl_error_handler_printout);
const int status = integrator<gsl_integrand_planck>(intparas, nu_lower, nu_upper, epsabs, epsrel, GSL_INTEG_GAUSS61,
&integral, &error);
if (status != 0) {
printout("planck_integral integrator status %d, GSL_FAILURE= %d. Integral value %g, setting to zero.\n", status,
GSL_FAILURE, integral);
integral = 0.;
}
gsl_set_error_handler(previous_handler);
return integral;
}
auto delta_nu_bar(const double T_R, void *const paras) -> double
// difference between the average nu and the average nu of a Planck function
// at temperature T_R, in the frequency range corresponding to a bin
{
const auto *params = static_cast<const GSLT_RSolverParams *>(paras);
const auto nonemptymgi = params->nonemptymgi;
const int binindex = params->binindex;
const double nu_lower = get_bin_nu_lower(binindex);
const double nu_upper = get_bin_nu_upper(binindex);
const double nu_bar_estimator = get_bin_nu_bar(nonemptymgi, binindex);
const double nu_times_planck_numerical = planck_integral(T_R, nu_lower, nu_upper, true);
const double planck_integral_numerical = planck_integral(T_R, nu_lower, nu_upper, false);
const double nu_bar_planck_T_R = nu_times_planck_numerical / planck_integral_numerical;
// double nu_times_planck_integral = planck_integral_analytic(T_R, nu_lower, nu_upper, true);
// double planck_integral_result = planck_integral_analytic(T_R, nu_lower, nu_upper, false);
// double nu_bar_planck = nu_times_planck_integral / planck_integral_result;
// // printout("nu_bar %g nu_bar_planck(T=%g) %g\n",nu_bar,T_R,nu_bar_planck);
// if (!std::isfinite(nu_bar_planck)) {
// double nu_times_planck_numerical = planck_integral(T_R, nu_lower, nu_upper, true);
// double planck_integral_numerical = planck_integral(T_R, nu_lower, nu_upper, false);
// double nu_bar_planck_numerical = nu_times_planck_numerical / planck_integral_numerical;
// printout("planck_integral_analytic is %g. Replacing with numerical result of %g.\n", nu_bar_planck,
// nu_bar_planck_numerical);
// nu_bar_planck = nu_bar_planck_numerical;
// }
const double delta_nu_bar = nu_bar_planck_T_R - nu_bar_estimator;
if (!std::isfinite(delta_nu_bar)) {
printout(
"delta_nu_bar is %g. nu_bar_planck_T_R %g nu_times_planck_numerical %g planck_integral_numerical %g "
"nu_bar_estimator %g\n",
delta_nu_bar, nu_bar_planck_T_R, nu_times_planck_numerical, planck_integral_numerical, nu_bar_estimator);
}
return delta_nu_bar;
}
auto find_T_R(const int nonemptymgi, const int binindex) -> float {
double T_R = 0.;
GSLT_RSolverParams paras{};
paras.nonemptymgi = nonemptymgi;
paras.binindex = binindex;
// Check whether the equation has a root in [T_min,T_max]
double delta_nu_bar_min = delta_nu_bar(T_R_min, ¶s);
double delta_nu_bar_max = delta_nu_bar(T_R_max, ¶s);
// printout("find_T_R: bin %4d delta_nu_bar(T_R_min) %g, delta_nu_bar(T_R_max) %g\n",
// binindex, delta_nu_bar_min,delta_nu_bar_max);
if (!std::isfinite(delta_nu_bar_min) || !std::isfinite(delta_nu_bar_max)) {
delta_nu_bar_max = delta_nu_bar_min = -1;
}
if (delta_nu_bar_min * delta_nu_bar_max < 0) {
// If there is a root in the interval, solve for T_R
const double epsrel = 1e-4;
const double epsabs = 0.;
const int maxit = 100;
gsl_function find_T_R_f = {.function = &delta_nu_bar, .params = ¶s};
// one dimensional gsl root solver, bracketing type
gsl_root_fsolver *T_R_solver = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
gsl_root_fsolver_set(T_R_solver, &find_T_R_f, T_R_min, T_R_max);
int status = 0;
for (int iteration_num = 0; iteration_num <= maxit; iteration_num++) {
gsl_root_fsolver_iterate(T_R_solver);
T_R = gsl_root_fsolver_root(T_R_solver);
const double T_R_lower = gsl_root_fsolver_x_lower(T_R_solver);
const double T_R_upper = gsl_root_fsolver_x_upper(T_R_solver);
status = gsl_root_test_interval(T_R_lower, T_R_upper, epsabs, epsrel);
// printout("find_T_R: bin %4d iter %d, T_R is between %7.1f and %7.1f, guess %7.1f, delta_nu_bar %g, status
// %d\n",
// binindex,iteration_num,T_R_lower,T_R_upper,T_R,delta_nu_bar(T_R,¶s),status);
if (status != GSL_CONTINUE) {
break;
}
}
if (status == GSL_CONTINUE) {
printout("[warning] find_T_R: T_R did not converge within %d iterations\n", maxit);
}
gsl_root_fsolver_free(T_R_solver);
} else if (delta_nu_bar_max < 0) {
// Thermal balance equation always negative ===> T_R = T_min
// Calculate the rates again at this T_e to print them to file
printout("find_T_R: cell %d bin %4d no solution in interval, clamping to T_R_max=%g\n",
grid::get_mgi_of_nonemptymgi(nonemptymgi), binindex, T_R_max);
T_R = T_R_max;
} else {
printout("find_T_R: cell %d bin %4d no solution in interval, clamping to T_R_min=%g\n",
grid::get_mgi_of_nonemptymgi(nonemptymgi), binindex, T_R_min);
T_R = T_R_min;
}
return T_R;
} // namespace radfield
void set_params_fullspec(const int nonemptymgi, const int timestep) {
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const double nubar = nuJ[nonemptymgi] / J[nonemptymgi];
if (!std::isfinite(nubar) || nubar == 0.) {
printout("[warning] T_R estimator infinite in cell %d, keep T_R, T_J, W of last timestep. J = %g. nuJ = %g\n",
modelgridindex, J[nonemptymgi], nuJ[nonemptymgi]);
} else {
float T_J = pow(J[nonemptymgi] * PI / STEBO, 1 / 4.);
if (T_J > MAXTEMP) {
printout("[warning] temperature estimator T_J = %g exceeds T_max %g in cell %d. Setting T_J = T_max!\n", T_J,
MAXTEMP, modelgridindex);
T_J = MAXTEMP;
} else if (T_J < MINTEMP) {
printout("[warning] temperature estimator T_J = %g below T_min %g in cell %d. Setting T_J = T_min!\n", T_J,
MINTEMP, modelgridindex);
T_J = MINTEMP;
}
grid::set_TJ(nonemptymgi, T_J);
float T_R = H * nubar / KB / 3.832229494;
if (T_R > MAXTEMP) {
printout("[warning] temperature estimator T_R = %g exceeds T_max %g in cell %d. Setting T_R = T_max!\n", T_R,
MAXTEMP, modelgridindex);
T_R = MAXTEMP;
} else if (T_R < MINTEMP) {
printout("[warning] temperature estimator T_R = %g below T_min %g in cell %d. Setting T_R = T_min!\n", T_R,
MINTEMP, modelgridindex);
T_R = MINTEMP;
}
grid::set_TR(nonemptymgi, T_R);
const float W = J[nonemptymgi] * PI / STEBO / pow(T_R, 4);
grid::set_W(nonemptymgi, W);
printout(
"Full-spectrum fit radfield for cell %d at timestep %d: J %g, nubar %5.1f Angstrom, T_J %g, T_R %g, W %g\n",
modelgridindex, timestep, J[nonemptymgi], 1e8 * CLIGHT / nubar, T_J, T_R, W);
}
}
auto get_bfcontindex(const int element, const int lowerion, const int lower, const int phixstargetindex) -> int {
// simple linear search seems to be faster than the binary search
// possibly because lower frequency transitions near start of list are more likely to be called?
const auto bfcontindex = static_cast<int>(std::find_if(globals::allcont, globals::allcont + globals::nbfcontinua,
[=](const auto &bf) {
return (bf.element == element) && (bf.ion == lowerion) &&
(bf.level == lower) &&
(bf.phixstargetindex == phixstargetindex);
}) -
globals::allcont);
if (bfcontindex < globals::nbfcontinua) {
return bfcontindex;
}
// not found in the continua list
return -1;
}
} // anonymous namespace
void init(const int my_rank, const int ndo_nonempty) {
// this should be called only after the atomic data is in memory
const ptrdiff_t nonempty_npts_model = grid::get_nonempty_npts_model();
J_normfactor.resize(nonempty_npts_model + 1);
J.resize(nonempty_npts_model + 1);
#ifdef DO_TITER
J_reduced_save.resize(nonempty_npts_model + 1);
#endif
// J and nuJ are accumulated and then normalised in-place
// i.e. be sure the normalisation has been applied (exactly once) before using the values here!
nuJ.resize(nonempty_npts_model + 1);
#ifdef DO_TITER
nuJ.resize(nonempty_npts_model + 1);
#endif
resize_exactly(prev_Jb_lu_normed, nonempty_npts_model);
resize_exactly(Jb_lu_raw, nonempty_npts_model);
detailed_linecount = 0;
if constexpr (DETAILED_LINE_ESTIMATORS_ON) {
for (int i = 0; i < globals::nlines; i++) {
const int element = globals::linelist[i].elementindex;
const int Z = get_atomicnumber(element);
if (Z == 26) {
const int lowerlevel = globals::linelist[i].lowerlevelindex;
// const int upperlevel = linelist[i].upperlevelindex;
// const int ion = linelist[i].ionindex;
// const int ionstage = get_ionstage(element, ion);
const double A_ul = globals::linelist[i].einstein_A;
bool addline = false;
// if (ionstage == 1 && lowerlevel == 6 && upperlevel == 55)
// addline = true;
// else if (ionstage == 1 && lowerlevel == 10 && upperlevel == 104)
// addline = true;
// else if (ionstage == 1 && lowerlevel == 10 && upperlevel == 112)
// addline = true;
// else if (ionstage == 2 && lowerlevel == 9 && upperlevel == 64)
// addline = true;
if (lowerlevel <= 15 && A_ul > 0.) { // ionstage <= 3 && A_ul > 1e3 &&
addline = true;
}
if (addline) {
// printout("Adding Jblue estimator for lineindex %d Z=%02d ionstage %d lower %d upper %d A_ul %g\n",
// i, Z, ionstage, lowerlevel, upperlevel, A_ul);
add_detailed_line(i);
}
}
}
}
printout("There are %d lines with detailed Jblue_lu estimators.\n", detailed_linecount);
printout("DETAILED_BF_ESTIMATORS %s", DETAILED_BF_ESTIMATORS_ON ? "ON" : "OFF");
if (DETAILED_BF_ESTIMATORS_ON) {
printout(" from timestep %d\n", DETAILED_BF_ESTIMATORS_USEFROMTIMESTEP);
} else {
printout("\n");
}
if (MULTIBIN_RADFIELD_MODEL_ON) {
printout("The multibin radiation field is being used from timestep %d onwards.\n", FIRST_NLTE_RADFIELD_TIMESTEP);
printout("Initialising multibin radiation field with %d bins from (%.2f eV, %6.1f A) to (%.2f eV, %6.1f A)\n",
RADFIELDBINCOUNT, H * nu_lower_first_initial / EV, 1e8 * CLIGHT / nu_lower_first_initial,
H * nu_upper_last_initial / EV, 1e8 * CLIGHT / nu_upper_last_initial);
if (ndo_nonempty > 0) {
char filename[MAXFILENAMELENGTH];
snprintf(filename, MAXFILENAMELENGTH, "radfield_%.4d.out", my_rank);
assert_always(radfieldfile == nullptr);
radfieldfile = fopen_required(filename, "w");
fprintf(radfieldfile, "timestep modelgridindex bin_num nu_lower nu_upper nuJ J J_nu_avg ncontrib T_R W\n");
fflush(radfieldfile);
}
const size_t mem_usage_bins = nonempty_npts_model * RADFIELDBINCOUNT * sizeof(RadFieldBin);
radfieldbins = static_cast<RadFieldBin *>(malloc(nonempty_npts_model * RADFIELDBINCOUNT * sizeof(RadFieldBin)));
const size_t mem_usage_bin_solutions = nonempty_npts_model * RADFIELDBINCOUNT * sizeof(RadFieldBinSolution);
std::tie(radfieldbin_solutions, win_radfieldbin_solutions) =
MPI_shared_malloc_keepwin<RadFieldBinSolution>(nonempty_npts_model * RADFIELDBINCOUNT);
printout("[info] mem_usage: radiation field bin accumulators for non-empty cells occupy %.3f MB\n",
mem_usage_bins / 1024. / 1024.);
printout(
"[info] mem_usage: radiation field bin solutions for non-empty cells occupy %.3f MB (node shared memory)\n",
mem_usage_bin_solutions / 1024. / 1024.);
} else {
printout("The radiation field model is a full-spectrum fit to a single dilute blackbody TR & W.\n");
}
if constexpr (DETAILED_BF_ESTIMATORS_ON) {
{
std::tie(prev_bfrate_normed, win_prev_bfrate_normed) =
MPI_shared_malloc_keepwin_span<float>(nonempty_npts_model * globals::bfestimcount);
if (globals::rank_in_node == 0) {
std::ranges::fill(prev_bfrate_normed, 0.);
}
}
printout("[info] mem_usage: detailed bf estimators for non-empty cells occupy %.3f MB (node shared memory)\n",
nonempty_npts_model * globals::bfestimcount * sizeof(float) / 1024. / 1024.);
bfrate_raw.resize(nonempty_npts_model * globals::bfestimcount);
printout("[info] mem_usage: detailed bf estimator acculumators for non-empty cells occupy %.3f MB\n",
nonempty_npts_model * globals::bfestimcount * sizeof(double) / 1024. / 1024.);
}
zero_estimators();
if constexpr (MULTIBIN_RADFIELD_MODEL_ON) {
MPI_Barrier(globals::mpi_comm_node);
if (globals::rank_in_node == 0) {
for (ptrdiff_t nonemptymgi = 0; nonemptymgi < grid::get_nonempty_npts_model(); nonemptymgi++) {
for (int binindex = 0; binindex < RADFIELDBINCOUNT; binindex++) {
const auto mgibinindex = (nonemptymgi * RADFIELDBINCOUNT) + binindex;
radfieldbin_solutions[mgibinindex].W = -1.;
radfieldbin_solutions[mgibinindex].T_R = -1.;
}
}
}
MPI_Barrier(globals::mpi_comm_node);
}
}
// Initialise estimator arrays which hold the last time steps values (used to damp out
// fluctuations over timestep iterations if DO_TITER is defined) to -1.
void initialise_prev_titer_photoionestimators() {
#ifdef DO_TITER
for (int nonemptymgi = 0; nonemptymgi < grid::get_nonempty_npts_model(); nonemptymgi++) {
const int nonemptymgi = grid::get_nonemptymgi_of_mgi(modelgridindex);
globals::ffheatingestimator_save[nonemptymgi] = -1.;
globals::colheatingestimator_save[nonemptymgi] = -1.;
J_reduced_save[nonemptymgi] = -1.;
nuJ_reduced_save[nonemptymgi] = -1.;
for (int element = 0; element < get_nelements(); element++) {
const int nions = get_nions(element);
for (int ion = 0; ion < nions - 1; ion++) {
if constexpr (USE_LUT_PHOTOION) {
globals::gammaestimator_save[get_ionestimindex_nonemptymgi(nonemptymgi, element, ion)] = -1.;
}
if constexpr (USE_LUT_BFHEATING) {
globals::bfheatingestimator_save[get_ionestimindex_nonemptymgi(nonemptymgi, element, ion)] = -1.;
}
}
}
}
#endif
}
auto get_Jblueindex(const int lineindex) -> int {
// returns -1 if the line does not have a Jblue estimator
if constexpr (!DETAILED_LINE_ESTIMATORS_ON) {
return -1;
}
// use a binary search, assuming the list is sorted
int low = 0;
int high = detailed_linecount - 1;
while (low <= high) {
const int mid = low + ((high - low) / 2);
if (detailed_lineindicies[mid] < lineindex) {
low = mid + 1;
} else if (detailed_lineindicies[mid] > lineindex) {
high = mid - 1;
} else {
assert_always(mid < detailed_linecount);
return mid;
}
}
return -1;
}
auto get_Jb_lu(const int nonemptymgi, const int jblueindex) -> double {
assert_always(jblueindex >= 0);
assert_always(jblueindex < detailed_linecount);
return prev_Jb_lu_normed[nonemptymgi][jblueindex].value;
}
auto get_Jb_lu_contribcount(const int nonemptymgi, const int jblueindex) -> int {
assert_always(jblueindex >= 0);
assert_always(jblueindex < detailed_linecount);
return prev_Jb_lu_normed[nonemptymgi][jblueindex].contribcount;
}
void write_to_file(const int modelgridindex, const int timestep) {
assert_always(MULTIBIN_RADFIELD_MODEL_ON);
const ptrdiff_t nonemptymgi = grid::get_nonemptymgi_of_mgi(modelgridindex);
#ifdef _OPENMP
#pragma omp critical(out_file)
{
#endif
int totalcontribs = 0;
for (int binindex = 0; binindex < RADFIELDBINCOUNT; binindex++) {
totalcontribs += get_bin_contribcount(nonemptymgi, binindex);
}
for (int binindex = -1 - detailed_linecount; binindex < RADFIELDBINCOUNT; binindex++) {
double nu_lower = 0.;
double nu_upper = 0.;
double nuJ_out = 0.;
double J_out = 0.;
float T_R = 0.;
float W = 0.;
double J_nu_bar = 0.;
int contribcount = 0;
const bool skipoutput = false;
if (binindex >= 0) {
nu_lower = get_bin_nu_lower(binindex);
nu_upper = get_bin_nu_upper(binindex);
nuJ_out = get_bin_nuJ(nonemptymgi, binindex);
J_out = get_bin_J(nonemptymgi, binindex);
T_R = get_bin_T_R(nonemptymgi, binindex);
W = get_bin_W(nonemptymgi, binindex);
J_nu_bar = J_out / (nu_upper - nu_lower);
contribcount = get_bin_contribcount(nonemptymgi, binindex);
} else if (binindex == -1) { // bin -1 is the full spectrum fit
nuJ_out = nuJ[nonemptymgi];
J_out = J[nonemptymgi];
T_R = grid::get_TR(nonemptymgi);
W = grid::get_W(nonemptymgi);
contribcount = totalcontribs;
} else // use binindex < -1 for detailed line Jb_lu estimators
{
const int jblueindex = -2 - binindex; // -2 is the first detailed line, -3 is the second, etc
const int lineindex = detailed_lineindicies[jblueindex];
const double nu_trans = globals::linelist[lineindex].nu;
nu_lower = nu_trans;
nu_upper = nu_trans;
nuJ_out = -1.;
J_out = -1.;
T_R = -1.;
W = -1.;
J_nu_bar = prev_Jb_lu_normed[nonemptymgi][jblueindex].value,
contribcount = prev_Jb_lu_normed[nonemptymgi][jblueindex].contribcount;
}
if (!skipoutput) {
fprintf(radfieldfile, "%d %d %d %.5e %.5e %.3e %.3e %.3e %d %.1f %.5e\n", timestep, modelgridindex, binindex,
nu_lower, nu_upper, nuJ_out, J_out, J_nu_bar, contribcount, T_R, W);
}
}
fflush(radfieldfile);
#ifdef _OPENMP
}
#endif
}
void close_file() {
if (radfieldfile != nullptr) {
fclose(radfieldfile);
radfieldfile = nullptr;
}
if (MULTIBIN_RADFIELD_MODEL_ON) {
free(radfieldbins);
if (win_radfieldbin_solutions != MPI_WIN_NULL) {
MPI_Win_free(&win_radfieldbin_solutions);
}
}
if constexpr (DETAILED_BF_ESTIMATORS_ON) {
if (win_radfieldbin_solutions != MPI_WIN_NULL) {
MPI_Win_free(&win_prev_bfrate_normed);
}
}
}
// set up the new bins and clear the estimators in preparation for a timestep
void zero_estimators() {
std::ranges::fill(J_normfactor, -1.0);
std::ranges::fill(J, 0.0);
std::ranges::fill(nuJ, 0.0);
std::ranges::fill(bfrate_raw, 0.0);
if constexpr (MULTIBIN_RADFIELD_MODEL_ON) {
assert_always(radfieldbins != nullptr);
for (ptrdiff_t nonemptymgi = 0; nonemptymgi < grid::get_nonempty_npts_model(); nonemptymgi++) {
std::fill_n(&radfieldbins[nonemptymgi * RADFIELDBINCOUNT], RADFIELDBINCOUNT,
RadFieldBin{.J_raw = 0., .nuJ_raw = 0., .contribcount = 0});
}
}
if constexpr (DETAILED_LINE_ESTIMATORS_ON) {
for (int nonemptymgi = 0; nonemptymgi < grid::get_nonempty_npts_model(); nonemptymgi++) {
std::fill_n(Jb_lu_raw[nonemptymgi].data(), detailed_linecount, Jb_lu_estimator{.value = 0., .contribcount = 0});
}
}
}
__host__ __device__ void update_estimators(const int nonemptymgi, const double distance_e_cmf, const double nu_cmf,
const double doppler_nucmf_on_nurf, const Phixslist &phixslist,
const bool thickcell) {
if (distance_e_cmf == 0) {
return;
}
atomicadd(J[nonemptymgi], distance_e_cmf);
atomicadd(nuJ[nonemptymgi], distance_e_cmf * nu_cmf);
if (thickcell) {
return;
}
if constexpr (DETAILED_BF_ESTIMATORS_ON) {
update_bfestimators(nonemptymgi, distance_e_cmf, nu_cmf, doppler_nucmf_on_nurf, phixslist);
}
if constexpr (MULTIBIN_RADFIELD_MODEL_ON) {
const int binindex = select_bin(nu_cmf);
if (binindex >= 0) {
const ptrdiff_t mgibinindex = (nonemptymgi * RADFIELDBINCOUNT) + binindex;
atomicadd(radfieldbins[mgibinindex].J_raw, distance_e_cmf);
atomicadd(radfieldbins[mgibinindex].nuJ_raw, distance_e_cmf * nu_cmf);
atomicadd(radfieldbins[mgibinindex].contribcount, 1);
}
}
}
__host__ __device__ void update_lineestimator(const int nonemptymgi, const int lineindex, const double increment) {
if constexpr (!DETAILED_LINE_ESTIMATORS_ON) {
return;
}
const int jblueindex = get_Jblueindex(lineindex);
if (jblueindex >= 0) {
Jb_lu_raw[nonemptymgi][jblueindex].value += increment;
Jb_lu_raw[nonemptymgi][jblueindex].contribcount += 1;
}
}
// mean intensity J_nu [ergs/s/sr/cm2/Hz]
__host__ __device__ auto radfield(const double nu, const int nonemptymgi) -> double {
if constexpr (MULTIBIN_RADFIELD_MODEL_ON) {
if (globals::timestep >= FIRST_NLTE_RADFIELD_TIMESTEP) {
const int binindex = select_bin(nu);
if (binindex >= 0) {
const auto &bin = radfieldbin_solutions[(static_cast<ptrdiff_t>(nonemptymgi) * RADFIELDBINCOUNT) + binindex];
if (bin.W >= 0.) {
const double J_nu = dbb(nu, bin.T_R, bin.W);
return J_nu;
}
}
return 0.;
}
}
const float T_R_fullspec = grid::get_TR(nonemptymgi);
const float W_fullspec = grid::get_W(nonemptymgi);
const double J_nu_fullspec = dbb(nu, T_R_fullspec, W_fullspec);
return J_nu_fullspec;
}
// return the integral of nu^3 / (exp(h nu / k T) - 1) from nu_lower to nu_upper
// or if times_nu is true, the integral of nu^4 / (exp(h nu / k T) - 1) from nu_lower to nu_upper
auto planck_integral_analytic(const double T_R, const double nu_lower, const double nu_upper, const bool times_nu)
-> double {
double integral = 0.;
if (times_nu) {
const double debye_upper = gsl_sf_debye_4(HOVERKB * nu_upper / T_R) * pow(nu_upper, 4);
const double debye_lower = gsl_sf_debye_4(HOVERKB * nu_lower / T_R) * pow(nu_lower, 4);
integral = TWOHOVERCLIGHTSQUARED * (debye_upper - debye_lower) * T_R / HOVERKB / 4.;
} else {
const double debye_upper = gsl_sf_debye_3(HOVERKB * nu_upper / T_R) * pow(nu_upper, 3);
const double debye_lower = gsl_sf_debye_3(HOVERKB * nu_lower / T_R) * pow(nu_lower, 3);
integral = TWOHOVERCLIGHTSQUARED * (debye_upper - debye_lower) * T_R / HOVERKB / 3.;
if (integral == 0.) {
// double upperexp = exp(HOVERKB * nu_upper / T_R);
// double upperint = - pow(nu_upper,4) / 4
// + pow(nu_upper,3) * log(1 - upperexp) / HOVERKB
// + 3 * pow(nu_upper,2) * polylog(2,upperexp) / pow(HOVERKB,2)
// - 6 * nu_upper * polylog(3,upperexp) / pow(HOVERKB,3)
// + 6 * polylog(4,upperexp) / pow(HOVERKB,4);
// double lowerexp = exp(HOVERKB * nu_lower / T_R);
// double lowerint = - pow(nu_lower,4) / 4
// + pow(nu_lower,3) * log(1 - lowerexp) / HOVERKB
// + 3 * pow(nu_lower,2) * polylog(2,lowerexp) / pow(HOVERKB,2)
// - 6 * nu_lower * polylog(3,lowerexp) / pow(HOVERKB,3)
// + 6 * polylog(4,lowerexp) / pow(HOVERKB,4);
// double integral2 = TWOHOVERCLIGHTSQUARED * (upperint - lowerint);
// printout("planck_integral_analytic is zero. debye_upper %g debye_lower %g. Test alternative %g\n",
// debye_upper,debye_lower,integral2);
}
}
return integral;
}
// finds the best fitting W and temperature parameters in each spectral bin using J and nuJ
void fit_parameters(const int nonemptymgi, const int timestep) {
set_params_fullspec(nonemptymgi, timestep);
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
if constexpr (MULTIBIN_RADFIELD_MODEL_ON) {
if (J_normfactor[nonemptymgi] <= 0) {
printout("radfield: FATAL J_normfactor = %g in cell %d at call to fit_parameters", J_normfactor[nonemptymgi],
modelgridindex);
std::abort();
}
double J_bin_sum = 0.;
for (int binindex = 0; binindex < RADFIELDBINCOUNT; binindex++) {
J_bin_sum += get_bin_J(nonemptymgi, binindex);
}
printout("radfield bins sum to J of %g (%.1f%% of total J).\n", J_bin_sum, 100. * J_bin_sum / J[nonemptymgi]);
printout("radfield: Finding parameters for %d bins...\n", RADFIELDBINCOUNT);
double J_bin_max = 0.;
for (int binindex = 0; binindex < RADFIELDBINCOUNT; binindex++) {
const double J_bin = get_bin_J(nonemptymgi, binindex);
J_bin_max = std::max(J_bin_max, J_bin);
}
for (int binindex = 0; binindex < RADFIELDBINCOUNT; binindex++) {
const double nu_lower = get_bin_nu_lower(binindex);
const double nu_upper = get_bin_nu_upper(binindex);
const double J_bin = get_bin_J(nonemptymgi, binindex);
float T_R_bin = -1.;
double W_bin = -1.;
const int contribcount = get_bin_contribcount(nonemptymgi, binindex);
if (contribcount > 0) {
{
T_R_bin = find_T_R(nonemptymgi, binindex);
if (binindex == RADFIELDBINCOUNT - 1) {
const auto T_e = grid::get_Te(nonemptymgi);
printout(" replacing bin %d T_R %7.1f with cell T_e = %7.1f\n", binindex,
get_bin_T_R(nonemptymgi, binindex), T_e);
T_R_bin = T_e;
}
double planck_integral_result = planck_integral(T_R_bin, nu_lower, nu_upper, false);
// printout("planck_integral(T_R=%g, nu_lower=%g, nu_upper=%g) = %g\n", T_R_bin, nu_lower,
// nu_upper, planck_integral_result);
W_bin = J_bin / planck_integral_result;
if (W_bin > 1e4) {
// printout("T_R_bin %g, nu_lower %g, nu_upper %g\n", T_R_bin, nu_lower, nu_upper);
printout("W %g too high, trying setting T_R of bin %d to %g. J_bin %g planck_integral %g\n", W_bin,
binindex, T_R_max, J_bin, planck_integral_result);
planck_integral_result = planck_integral(T_R_max, nu_lower, nu_upper, false);
W_bin = J_bin / planck_integral_result;
if (W_bin > 1e4) {
printout("W still very high, W=%g. Zeroing bin...\n", W_bin);
T_R_bin = -99.;
W_bin = 0.;
} else {
printout("new W is %g. Continuing with this value\n", W_bin);
T_R_bin = T_R_max;
}
}
}
} else {
T_R_bin = 0.;
W_bin = 0.;
}
const auto mgibinindex = (nonemptymgi * RADFIELDBINCOUNT) + binindex;
radfieldbin_solutions[mgibinindex].T_R = T_R_bin;
radfieldbin_solutions[mgibinindex].W = W_bin;
}
write_to_file(modelgridindex, timestep);
}
}
void set_J_normfactor(const int nonemptymgi, const double normfactor) { J_normfactor[nonemptymgi] = normfactor; }
void normalise_J(const int nonemptymgi, const double estimator_normfactor_over4pi) {
assert_always(std::isfinite(J[nonemptymgi]));
J[nonemptymgi] *= estimator_normfactor_over4pi;
for (int i = 0; i < detailed_linecount; i++) {
prev_Jb_lu_normed[nonemptymgi][i].value = Jb_lu_raw[nonemptymgi][i].value * estimator_normfactor_over4pi;
prev_Jb_lu_normed[nonemptymgi][i].contribcount = Jb_lu_raw[nonemptymgi][i].contribcount;
}
}
void normalise_bf_estimators(const int nts, const int nts_prev, const int titer, const double deltat) {
if (globals::rank_in_node != 0) {
return;
}
if (globals::lte_iteration) {
return;
}
if (nts == globals::timestep_initial && titer == 0) {
return;
}
const auto bfestimcount = globals::bfestimcount;
const ptrdiff_t nonempty_npts_model = grid::get_nonempty_npts_model();
for (ptrdiff_t nonemptymgi = 0; nonemptymgi < nonempty_npts_model; nonemptymgi++) {
if (grid::modelgrid[nonemptymgi].thick == 1) {
continue;
}
const auto mgi = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const double deltaV =
grid::get_modelcell_assocvolume_tmin(mgi) * pow(globals::timesteps[nts_prev].mid / globals::tmin, 3);
const double estimator_normfactor = 1 / deltaV / deltat / globals::nprocs;
for (int i = 0; i < bfestimcount; i++) {
const auto mgibfindex = (nonemptymgi * bfestimcount) + i;
prev_bfrate_normed[mgibfindex] = bfrate_raw[mgibfindex] * (estimator_normfactor / H);
}
}
}
auto get_bfrate_estimator(const int element, const int lowerion, const int lower, const int phixstargetindex,
const int nonemptymgi) -> double {
if constexpr (DETAILED_BF_ESTIMATORS_ON) {
const int allcontindex = get_bfcontindex(element, lowerion, lower, phixstargetindex);
if (allcontindex >= 0) {
const auto bfestimindex = globals::allcont[allcontindex].bfestimindex;
if (bfestimindex >= 0) {
return prev_bfrate_normed[(nonemptymgi * globals::bfestimcount) + bfestimindex];
}
}
}
return -1.;
}
void normalise_nuJ(const int nonemptymgi, const double estimator_normfactor_over4pi) {
assert_always(std::isfinite(nuJ[nonemptymgi]));
nuJ[nonemptymgi] *= estimator_normfactor_over4pi;
}
auto get_T_J_from_J(const int nonemptymgi) -> double {
const double T_J = pow(J[nonemptymgi] * PI / STEBO, 1. / 4.);
if (!std::isfinite(T_J)) {
// keep old value of T_J
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
printout("[warning] get_T_J_from_J: T_J estimator infinite in cell %d, use value of last timestep\n",
modelgridindex);
return grid::get_TR(nonemptymgi);
}
// Make sure that T is in the allowed temperature range.
if (T_J > MAXTEMP) {
printout("[warning] get_T_J_from_J: T_J would be %.1f > MAXTEMP. Clamping to MAXTEMP = %.0f K\n", T_J, MAXTEMP);
return MAXTEMP;
}
if (T_J < MINTEMP) {
printout("[warning] get_T_J_from_J: T_J would be %.1f < MINTEMP. Clamping to MINTEMP = %.0f K\n", T_J, MINTEMP);
return MINTEMP;
}
return T_J;
}
#ifdef DO_TITER
void titer_J(const int modelgridindex) {
const int nonemptymgi = grid::get_nonemptymgi_of_mgi(modelgridindex);
if (J_reduced_save[nonemptymgi] >= 0) {
J[nonemptymgi] = (J[nonemptymgi] + J_reduced_save[nonemptymgi]) / 2;
}
J_reduced_save[nonemptymgi] = J[nonemptymgi];
}