-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathltepop.cc
639 lines (540 loc) · 25.5 KB
/
ltepop.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#include "ltepop.h"
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_roots.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <vector>
#include "artisoptions.h"
#include "atomic.h"
#include "constants.h"
#include "decay.h"
#include "globals.h"
#include "grid.h"
#include "nltepop.h"
#include "nonthermal.h"
#include "ratecoeff.h"
#include "rpkt.h"
#include "sn3d.h"
namespace {
struct nneSolutionParas {
int nonemptymgi;
bool force_lte;
};
auto interpolate_ions_spontrecombcoeff(const int uniqueionindex, const double T) -> double {
const int lowerindex = floor(log(T / MINTEMP) / T_step_log);
assert_testmodeonly(lowerindex >= 0);
if (lowerindex < TABLESIZE - 1) {
const int upperindex = lowerindex + 1;
const double T_lower = MINTEMP * exp(lowerindex * T_step_log);
const double T_upper = MINTEMP * exp(upperindex * T_step_log);
const double f_upper = globals::ion_alpha_sp[(uniqueionindex * TABLESIZE) + upperindex];
const double f_lower = globals::ion_alpha_sp[(uniqueionindex * TABLESIZE) + lowerindex];
return f_lower + ((f_upper - f_lower) / (T_upper - T_lower) * (T - T_lower));
}
return globals::ion_alpha_sp[(uniqueionindex * TABLESIZE) + TABLESIZE - 1];
}
// use Saha equation for LTE ionization balance
auto phi_lte(const int element, const int ion, const int nonemptymgi) -> double {
const int uniqueionindex = get_uniqueionindex(element, ion);
const auto partfunc_ion =
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex];
const auto partfunc_upperion =
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex + 1];
const auto T_e = grid::get_Te(nonemptymgi);
const double ionpot = epsilon(element, ion + 1, 0) - epsilon(element, ion, 0);
const double partfunct_ratio = partfunc_ion / partfunc_upperion;
return partfunct_ratio * SAHACONST * pow(T_e, -1.5) * exp(ionpot / KB / T_e);
}
// Calculate population ratio (a saha factor) of two consecutive ionisation stages in nebular approximation phi_j,k* =
// N_j,k*/(N_j+1,k* * nne)
auto phi_rate_balance(const int element, const int ion, const int nonemptymgi) -> double {
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(ion < get_nions(element));
assert_testmodeonly(!globals::lte_iteration);
assert_testmodeonly(grid::modelgrid[nonemptymgi].thick != 1); // should use use phi_lte instead
assert_testmodeonly(!elem_has_nlte_levels(element)); // don't use this function if the NLTE solver is active
const int uniqueionindex = get_uniqueionindex(element, ion);
const auto partfunc_ion =
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex];
const auto T_e = grid::get_Te(nonemptymgi);
// photoionisation plus collisional ionisation rate coefficient per ground level pop
const double Gamma = globals::gammaestimator[get_ionestimindex_nonemptymgi(nonemptymgi, element, ion)];
// Gamma is the photoionization rate per ground level pop
const double Gamma_ion = Gamma * stat_weight(element, ion, 0) / partfunc_ion;
const double Alpha_sp = interpolate_ions_spontrecombcoeff(uniqueionindex, T_e);
// const double Col_rec = calculate_ionrecombcoeff(modelgridindex, T_e, element, ion + 1, false, true, false, false,
// false);
const double Col_rec = 0.;
const double gamma_nt = NT_ON ? nonthermal::nt_ionization_ratecoeff(nonemptymgi, element, ion) : 0.;
if ((Gamma_ion + gamma_nt) == 0) {
printout("Fatal: Gamma = 0 for element %d, ion %d in phi ... abort\n", element, ion);
std::abort();
}
const double phi = (Alpha_sp + Col_rec) / (Gamma_ion + gamma_nt);
// Y_nt should generally be higher than the Gamma term for nebular epoch
if (!std::isfinite(phi) || phi == 0.) {
const auto partfunc_upperion =
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex + 1];
printout(
"[fatal] phi: phi %g exceeds numerically possible range for element %d, ion %d, T_e %g ... remove higher or "
"lower ionisation stages\n",
phi, element, ion, T_e);
printout("[fatal] phi: Alpha_sp %g, Gamma %g, partfunct %g, stat_weight %g\n", Alpha_sp, Gamma_ion, partfunc_ion,
stat_weight(element, ion, 0));
printout("[fatal] phi: upperionpartfunct %g, upperionstatweight %g\n", partfunc_upperion,
stat_weight(element, ion + 1, 0));
printout("[fatal] phi: gamma_nt %g Col_rec %g grid::get_nne(nonemptymgi) %g\n", gamma_nt, Col_rec,
grid::get_nne(nonemptymgi));
std::abort();
}
return phi;
}
// calculate the free electron contribution from an element
auto get_element_nne_contrib(const int nonemptymgi, const int element) -> double {
if (grid::get_elem_numberdens(nonemptymgi, element) <= 0.) {
return 0.;
}
double nne = 0.;
const int nions = get_nions(element);
for (int ion = 0; ion < nions; ion++) {
const auto nnion = get_nnion(nonemptymgi, element, ion);
const int ioncharge = get_ionstage(element, ion) - 1;
nne += ioncharge * nnion;
}
return nne;
}
// assume a value for nne and then calculate the resulting nne
// the difference between the assumed and calculated nne is returned
auto nne_solution_f(const double nne_assumed, void *const voidparas) -> double {
const auto *paras = static_cast<const nneSolutionParas *>(voidparas);
const int nonemptymgi = paras->nonemptymgi;
const bool force_lte = paras->force_lte;
double nne_after = 0.; // the resulting nne after setting the ion balance with nne_assumed
for (int element = 0; element < get_nelements(); element++) {
const double nnelement = grid::get_elem_numberdens(nonemptymgi, element);
if (nnelement > 0 && get_nions(element) > 0) {
if (!force_lte && elem_has_nlte_levels(element)) {
// populations from the NLTE solver are fixed during the nne solver
nne_after += get_element_nne_contrib(nonemptymgi, element);
} else {
const bool use_phi_lte = force_lte || FORCE_SAHA_ION_BALANCE(get_atomicnumber(element));
const auto ionfractions = calculate_ionfractions(element, nonemptymgi, nne_assumed, use_phi_lte);
const int uppermost_ion = static_cast<int>(ionfractions.size() - 1);
for (int ion = 0; ion <= uppermost_ion; ion++) {
const double nnion = nnelement * ionfractions[ion];
const int ioncharge = get_ionstage(element, ion) - 1;
nne_after += ioncharge * nnion;
}
}
assert_always(std::isfinite(nne_after));
}
}
nne_after = std::max(MINPOP, nne_after);
return nne_after - nne_assumed;
}
auto calculate_levelpop_nominpop(const int nonemptymgi, const int element, const int ion, const int level,
bool *const skipminpop) -> double {
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(ion < get_nions(element));
assert_testmodeonly(level < get_nlevels(element, ion));
double nn{NAN};
if (level == 0) {
nn = get_groundlevelpop(nonemptymgi, element, ion);
} else if (elem_has_nlte_levels(element)) {
if (is_nlte(element, ion, level)) {
// first_nlte refers to the first excited state (level=1)
const double nltepop_over_rho = get_nlte_levelpop_over_rho(nonemptymgi, element, ion, level);
if (nltepop_over_rho < -0.9) {
// Case for when no NLTE level information is available yet
nn = calculate_levelpop_lte(nonemptymgi, element, ion, level);
} else {
nn = nltepop_over_rho * grid::get_rho(nonemptymgi);
if (!std::isfinite(nn)) {
printout("[fatal] NLTE population failure.\n");
printout("element %d ion %d level %d\n", element, ion, level);
printout("nn %g nltepop_over_rho %g rho %g\n", nn, nltepop_over_rho, grid::get_rho(nonemptymgi));
printout("ground level %g\n", get_groundlevelpop(nonemptymgi, element, ion));
std::abort();
}
*skipminpop = true;
return nn;
}
} else {
// level is in the superlevel
assert_testmodeonly(level_isinsuperlevel(element, ion, level));
const double superlevelpop_over_rho = get_nlte_superlevelpop_over_rho(nonemptymgi, element, ion);
if (superlevelpop_over_rho < -0.9) // TODO: should change this to less than zero?
{
// Case for when no NLTE level information is available yet
nn = calculate_levelpop_lte(nonemptymgi, element, ion, level);
} else {
nn = superlevelpop_over_rho * grid::get_rho(nonemptymgi) *
superlevel_boltzmann(nonemptymgi, element, ion, level);
if (!std::isfinite(nn)) {
printout("[fatal] NLTE population failure.\n");
printout("element %d ion %d level %d\n", element, ion, level);
printout("nn %g superlevelpop_over_rho %g rho %g\n", nn, superlevelpop_over_rho, grid::get_rho(nonemptymgi));
printout("ground level %g\n", get_groundlevelpop(nonemptymgi, element, ion));
std::abort();
}
*skipminpop = true;
return nn;
}
}
} else {
nn = calculate_levelpop_lte(nonemptymgi, element, ion, level);
}
*skipminpop = false;
return nn;
}
auto calculate_partfunct(const int element, const int ion, const int nonemptymgi) -> double
// Calculates the partition function for ion=ion of element=element in
// cell modelgridindex
{
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(ion < get_nions(element));
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
double pop_store{NAN};
const int uniqueionindex = get_uniqueionindex(element, ion);
bool initial = false;
if (get_groundlevelpop(nonemptymgi, element, ion) < MINPOP) {
// either there really is none of this ion or this is a first pass through
// in either case, we won't have any real nlte_populations so the actual value of
// of groundlevelpop for this calculation doesn't matter, so long as it's not zero!
pop_store = get_groundlevelpop(nonemptymgi, element, ion);
initial = true;
grid::ion_groundlevelpops_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex] =
1.;
}
double U = 1.;
const int nlevels = get_nlevels(element, ion);
const double groundpop = get_groundlevelpop(nonemptymgi, element, ion);
for (int level = 1; level < nlevels; level++) {
bool skipminpop = false;
const double nn = calculate_levelpop_nominpop(nonemptymgi, element, ion, level, &skipminpop) / groundpop;
U += nn;
}
U *= stat_weight(element, ion, 0);
if (!std::isfinite(U)) {
printout("element %d ion %d\n", element, ion);
printout("modelgridindex %d\n", modelgridindex);
printout("nlevels %d\n", nlevels);
printout("sw %g\n", stat_weight(element, ion, 0));
std::abort();
}
if (initial) {
// put back the zero, just in case it matters for something
grid::ion_groundlevelpops_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex] =
pop_store;
}
return U;
}
auto find_uppermost_ion(const int nonemptymgi, const int element, const double nne_hi, const bool force_lte) -> int {
const int nions = get_nions(element);
if (nions == 0) {
return -1;
}
if (!force_lte && elem_has_nlte_levels(element)) {
return nions - 1;
}
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const bool use_phi_lte = force_lte || FORCE_SAHA_ION_BALANCE(get_atomicnumber(element));
int uppermost_ion = 0;
uppermost_ion = nions - 1;
if (!use_phi_lte) {
for (int ion = 0; ion < nions - 1; ion++) {
if (iongamma_is_zero(nonemptymgi, element, ion) &&
(!NT_ON || ((globals::dep_estimator_gamma[nonemptymgi] == 0.) &&
(grid::get_modelinitnucmassfrac(modelgridindex, decay::get_nucindex(24, 48)) == 0.) &&
(grid::get_modelinitnucmassfrac(modelgridindex, decay::get_nucindex(28, 56)) == 0.)))) {
uppermost_ion = ion;
break;
}
}
}
double factor = 1.;
int ion = 0;
for (ion = 0; ion < uppermost_ion; ion++) {
const auto phifactor =
use_phi_lte ? phi_lte(element, ion, nonemptymgi) : phi_rate_balance(element, ion, nonemptymgi);
factor *= nne_hi * phifactor;
if (!std::isfinite(factor)) {
printout(
"[info] calculate_ion_balance_nne: uppermost_ion limited by phi factors for element "
"Z=%d, ionstage %d in cell %d\n",
get_atomicnumber(element), get_ionstage(element, ion), modelgridindex);
return ion;
}
}
uppermost_ion = ion;
return uppermost_ion;
}
void set_calculated_nne(const int nonemptymgi) {
double nne = 0.; // free electron density
for (int element = 0; element < get_nelements(); element++) {
nne += get_element_nne_contrib(nonemptymgi, element);
}
grid::set_nne(nonemptymgi, std::max(MINPOP, nne));
}
// Special case of only neutral ions, set nne to some finite value so that packets are not lost in kpkts
void set_groundlevelpops_neutral(const int nonemptymgi) {
printout("[warning] calculate_ion_balance_nne: only neutral ions in cell modelgridindex %d\n",
grid::get_mgi_of_nonemptymgi(nonemptymgi));
for (int element = 0; element < get_nelements(); element++) {
const auto nnelement = grid::get_elem_numberdens(nonemptymgi, element);
const int nions = get_nions(element);
// Assign the species population to the neutral ion and set higher ions to MINPOP
for (int ion = 0; ion < nions; ion++) {
const int uniqueionindex = get_uniqueionindex(element, ion);
double nnion{NAN};
if (ion == 0) {
nnion = nnelement;
} else if (nnelement > 0.) {
nnion = MINPOP;
} else {
nnion = 0.;
}
const double groundpop =
(nnion * stat_weight(element, ion, 0) /
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex]);
grid::ion_groundlevelpops_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) + uniqueionindex] =
groundpop;
}
}
}
auto find_converged_nne(const int nonemptymgi, double nne_hi, const bool force_lte) -> float {
// Search solution for nne in [nne_lo,nne_hi]
nneSolutionParas paras = {.nonemptymgi = nonemptymgi, .force_lte = force_lte};
gsl_function f = {.function = &nne_solution_f, .params = ¶s};
double nne_lo = 0.; // MINPOP;
if (nne_solution_f(nne_lo, f.params) * nne_solution_f(nne_hi, f.params) > 0) {
const auto T_R = grid::get_TR(nonemptymgi);
const auto T_e = grid::get_Te(nonemptymgi);
const auto W = grid::get_W(nonemptymgi);
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
printout("n, nne_lo, nne_hi, T_R, T_e, W, rho %d, %g, %g, %g, %g, %g, %g\n", modelgridindex, nne_lo, nne_hi, T_R,
T_e, W, grid::get_rho(nonemptymgi));
printout("nne@x_lo %g\n", nne_solution_f(nne_lo, f.params));
printout("nne@x_hi %g\n", nne_solution_f(nne_hi, f.params));
for (int element = 0; element < get_nelements(); element++) {
printout("modelgridindex %d, element %d, uppermost_ion is %d\n", modelgridindex, element,
grid::get_elements_uppermost_ion(nonemptymgi, element));
if constexpr (USE_LUT_PHOTOION) {
for (int ion = 0; ion <= grid::get_elements_uppermost_ion(nonemptymgi, element); ion++) {
printout("element %d, ion %d, gammaionest %g\n", element, ion,
globals::gammaestimator[get_ionestimindex_nonemptymgi(nonemptymgi, element, ion)]);
}
}
}
}
double nne_solution = 0.;
gsl_root_fsolver *solver = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
gsl_root_fsolver_set(solver, &f, nne_lo, nne_hi);
constexpr int maxit = 50;
constexpr double fractional_accuracy = 1e-3;
int status = GSL_CONTINUE;
int iter = 0;
for (iter = 0; iter <= maxit; iter++) {
gsl_root_fsolver_iterate(solver);
nne_solution = gsl_root_fsolver_root(solver);
nne_lo = gsl_root_fsolver_x_lower(solver);
nne_hi = gsl_root_fsolver_x_upper(solver);
status = gsl_root_test_interval(nne_lo, nne_hi, 0, fractional_accuracy);
if (status != GSL_CONTINUE) {
break;
}
}
if (status == GSL_CONTINUE) {
printout("[warning] calculate_ion_balance_nne: nne did not converge within %d iterations\n", iter + 1);
}
gsl_root_fsolver_free(solver);
return std::max(MINPOP, nne_solution);
}
} // anonymous namespace
// Calculate the fractions of an element's population in each ionization stage based on Saha LTE or ionisation
// equilibrium
[[nodiscard]] auto calculate_ionfractions(const int element, const int nonemptymgi, const double nne,
const bool use_phi_lte) -> std::vector<double> {
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const int uppermost_ion = grid::get_elements_uppermost_ion(nonemptymgi, element);
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(uppermost_ion <= std::max(0, get_nions(element) - 1));
if (uppermost_ion < 0) {
return {};
}
std::vector<double> ionfractions(uppermost_ion + 1);
ionfractions[uppermost_ion] = 1;
double normfactor = 1.;
for (int ion = uppermost_ion - 1; ion >= 0; ion--) {
const auto phifactor =
use_phi_lte ? phi_lte(element, ion, nonemptymgi) : phi_rate_balance(element, ion, nonemptymgi);
ionfractions[ion] = ionfractions[ion + 1] * nne * phifactor;
normfactor += ionfractions[ion];
}
for (int ion = 0; ion <= uppermost_ion; ion++) {
ionfractions[ion] = ionfractions[ion] / normfactor;
if (normfactor == 0. || !std::isfinite(ionfractions[ion])) {
printout("[warning] ionfract set to zero for ionstage %d of Z=%d in cell %d with T_e %g, T_R %g\n",
get_ionstage(element, ion), get_atomicnumber(element), modelgridindex, grid::get_Te(nonemptymgi),
grid::get_TR(nonemptymgi));
ionfractions[ion] = 0;
}
}
return ionfractions;
}
// Return the given ions groundlevel population for modelgridindex which was precalculated
// during update_grid and stored to the grid.
auto get_groundlevelpop(const int nonemptymgi, const int element, const int ion) -> double {
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(ion < get_nions(element));
const double nn = grid::ion_groundlevelpops_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) +
get_uniqueionindex(element, ion)];
if (nn < MINPOP) {
if (grid::get_elem_abundance(nonemptymgi, element) > 0) {
return MINPOP;
}
return 0.;
}
return nn;
}
// Calculate occupation population of a level assuming LTE excitation
auto calculate_levelpop_lte(const int nonemptymgi, const int element, const int ion, const int level) -> double {
assert_testmodeonly(element < get_nelements());
assert_testmodeonly(ion < get_nions(element));
assert_testmodeonly(level < get_nlevels(element, ion));
const auto nnground = get_groundlevelpop(nonemptymgi, element, ion);
if (level == 0) {
return nnground;
}
const auto T_exc = LTEPOP_EXCITATION_USE_TJ ? grid::get_TJ(nonemptymgi) : grid::get_Te(nonemptymgi);
const double E_aboveground = epsilon(element, ion, level) - epsilon(element, ion, 0);
return (nnground * stat_weight(element, ion, level) / stat_weight(element, ion, 0) *
exp(-E_aboveground / KB / T_exc));
}
auto calculate_levelpop(const int nonemptymgi, const int element, const int ion, const int level) -> double {
bool skipminpop = false;
double nn = calculate_levelpop_nominpop(nonemptymgi, element, ion, level, &skipminpop);
if (!skipminpop && nn < MINPOP) {
if (grid::get_elem_abundance(nonemptymgi, element) > 0) {
nn = MINPOP;
} else {
nn = 0.;
}
}
return nn;
}
// Calculate the population of a level from either LTE or NLTE information
__host__ __device__ auto get_levelpop(const int nonemptymgi, const int element, const int ion, const int level)
-> double {
double nn = 0.;
if (use_cellcache) {
assert_testmodeonly(globals::cellcache[cellcacheslotid].nonemptymgi == nonemptymgi);
nn = globals::cellcache[cellcacheslotid].chelements[element].chions[ion].chlevels[level].population;
} else {
nn = calculate_levelpop(nonemptymgi, element, ion, level);
}
assert_testmodeonly(nn >= 0.);
assert_testmodeonly(std::isfinite(nn));
return nn;
}
// The partition functions depend only on T_R and W. This means they don't
// change during any iteration on T_e. Therefore their precalculation was
// taken out of calculate_ion_balance_nne to save runtime.
// TODO: not true if LTEPOP_EXCITATION_USE_TJ is true unless LTE mode only (TJ=TR=Te)
void calculate_cellpartfuncts(const int nonemptymgi, const int element) {
const int nions = get_nions(element);
for (int ion = 0; ion < nions; ion++) {
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) +
get_uniqueionindex(element, ion)] = calculate_partfunct(element, ion, nonemptymgi);
}
}
// calculates saha factor in LTE: Phi_level,ion,element = nn_level,ion,element/(nne*nn_upper,ion+1,element)
__host__ __device__ auto calculate_sahafact(const int element, const int ion, const int level, const int upperionlevel,
const double T, const double E_threshold) -> double {
const double g_lower = stat_weight(element, ion, level);
const double g_upper = stat_weight(element, ion + 1, upperionlevel);
const double sf = SAHACONST * g_lower / g_upper * pow(T, -1.5) * exp(E_threshold / KB / T);
if (sf < 0) {
printout(
"[fatal] calculate_sahafact: Negative Saha factor. sfac %g element %d ion %d level %d upperionlevel %d "
"g_lower %g g_upper %g T %g E_threshold %g exppart %g\n",
sf, element, ion, level, upperionlevel, g_lower, g_upper, T, E_threshold, exp(E_threshold / KB / T));
std::abort();
}
return sf;
}
// Use the ground level population and partition function to get an ion population
[[nodiscard]] __host__ __device__ auto get_nnion(const int nonemptymgi, const int element, const int ion) -> double {
return get_groundlevelpop(nonemptymgi, element, ion) *
grid::ion_partfuncts_allcells[(static_cast<ptrdiff_t>(nonemptymgi) * get_includedions()) +
get_uniqueionindex(element, ion)] /
stat_weight(element, ion, 0);
}
// If not already set by the NLTE solver, set the ground level populations from either Saha LTE or
// ionization/recombination balance (Photoionization Equilibrium)
void set_groundlevelpops(const int nonemptymgi, const int element, const float nne, const bool force_lte) {
const int nions = get_nions(element);
if (nions <= 0) {
return;
}
// calculate number density of the current element (abundances are given by mass)
const double nnelement = grid::get_elem_numberdens(nonemptymgi, element);
const bool use_phi_lte = force_lte || FORCE_SAHA_ION_BALANCE(get_atomicnumber(element));
const auto ionfractions =
(nnelement > 0) ? calculate_ionfractions(element, nonemptymgi, nne, use_phi_lte) : std::vector<double>();
const int uppermost_ion = static_cast<int>(ionfractions.size() - 1);
const ptrdiff_t nincludedions = get_includedions();
// Use ion fractions to calculate the groundlevel populations
for (int ion = 0; ion < nions; ion++) {
const int uniqueionindex = get_uniqueionindex(element, ion);
double nnion{NAN};
if (ion <= uppermost_ion) {
if (nnelement > 0) {
nnion = std::max(MINPOP, nnelement * ionfractions[ion]);
} else {
nnion = 0.;
}
} else {
nnion = MINPOP;
}
const double groundpop = nnion * stat_weight(element, ion, 0) /
grid::ion_partfuncts_allcells[(nonemptymgi * nincludedions) + uniqueionindex];
if (!std::isfinite(groundpop)) {
printout("[warning] calculate_ion_balance_nne: groundlevelpop infinite in connection with MINPOP\n");
}
grid::ion_groundlevelpops_allcells[(nonemptymgi * nincludedions) + uniqueionindex] = groundpop;
}
}
// Determine the electron number density for a given cell using one of
// libgsl's root_solvers and calculates the depending level populations.
auto calculate_ion_balance_nne(const int nonemptymgi) -> void {
const bool force_lte = globals::lte_iteration || grid::modelgrid[nonemptymgi].thick == 1;
const double nne_hi = grid::get_rho(nonemptymgi) / MH;
bool only_lowest_ionstage = true; // could be completely neutral, or just at each element's lowest ion stage
for (int element = 0; element < get_nelements(); element++) {
if (grid::get_elem_abundance(nonemptymgi, element) > 0) {
const int uppermost_ion = find_uppermost_ion(nonemptymgi, element, nne_hi, force_lte);
grid::set_elements_uppermost_ion(nonemptymgi, element, uppermost_ion);
only_lowest_ionstage = only_lowest_ionstage && (uppermost_ion <= 0);
} else {
grid::set_elements_uppermost_ion(nonemptymgi, element, get_nions(element) - 1);
}
}
if (only_lowest_ionstage) {
set_groundlevelpops_neutral(nonemptymgi);
} else {
const auto nne_solution = find_converged_nne(nonemptymgi, nne_hi, force_lte);
grid::set_nne(nonemptymgi, nne_solution);
for (int element = 0; element < get_nelements(); element++) {
// avoid overwriting the ground level populations set by the NLTE pop solver
const bool already_set_by_nlte_solver = !force_lte && elem_has_nlte_levels(element);
if (!already_set_by_nlte_solver) {
set_groundlevelpops(nonemptymgi, element, nne_solution, force_lte);
}
}
}
set_calculated_nne(nonemptymgi);
}