-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmodel_in_use.py
89 lines (74 loc) · 3.16 KB
/
model_in_use.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# from main import base_model, get_last_weights
from tensorflow.keras.models import model_from_json, load_model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np, glob, cv2.cv2 as cv2, matplotlib.pyplot as plt, copy
from skimage.segmentation import mark_boundaries
from visualization_tools import generate_explanation, GradCAM
from BEASF import BEASF
# from tf_explain.core.grad_cam import GradCAM
def get_weights(folder):
"""
find last saved weights file and its epoch number
:param folder: string
:return: string
"""
num_epochs = list()
for weights_file in glob.glob(folder + '/**.hdf5'):
num_epoch = int(weights_file[weights_file.find('=')+1:weights_file.rfind('_')])
num_epochs.append((num_epoch, weights_file))
last_file = max(num_epochs)[1]
print('last saved file:', last_file)
return last_file
IMG_PATH = ['./chest_xray_images/covid19/?', '1']
IMG_SHAPE = (320, 320, 3)
test_img = load_img(path=IMG_PATH[0], color_mode='grayscale')
test_img = img_to_array(img=test_img, data_format='channels_last')
test_img = cv2.resize(test_img, dsize=IMG_SHAPE[:2], interpolation=cv2.INTER_NEAREST)
test_img = np.expand_dims(test_img, axis=-1)
test_img = test_img.astype(np.uint8)
ref_img = copy.deepcopy(x=test_img)
temp_img = np.concatenate((test_img, test_img, test_img), axis=-1)
if IMG_SHAPE[-1] == 3:
test_img_clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)).apply(test_img)
test_img_clahe = np.expand_dims(a=test_img_clahe, axis=-1)
test_img_beasf = BEASF(image=test_img, gamma=1.5)
test_img = np.concatenate((test_img, test_img_beasf, test_img_clahe), axis=-1)
else:
pass
test_img = test_img / 255.
# test_img = np.expand_dims(test_img, axis=0)
print('external image(s) shape:', test_img.shape)
# load model as a json file and load weights from .hdf5 file
json_file = open(file='./checkpoints/COVID-CXNet/COVID-CXNet_model.json', mode='r')
model_json = json_file.read()
json_file.close()
cxnet = model_from_json(model_json)
cxnet.load_weights('./checkpoints/COVID-CXNet/eps=008_valLoss=0.0311.hdf5')
# load_model if the model is saved as a single .h5 file
chexnet = load_model('./checkpoints/CheXNet/CheXNet_model.hdf5')
cam = GradCAM(model=chexnet, classIdx=6, layerName=None)
heatmap = cam.compute_heatmap(image=test_img, normalize=True)
overlaid_heatmap = cam.overlay_heatmap(heatmap=heatmap, image=temp_img, alpha=0.8, colormap=cv2.COLORMAP_HSV)
fig1 = plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(overlaid_heatmap)
plt.axis('off')
plt.title('pred=%.4f' % chexnet.predict(np.expand_dims(test_img, axis=0))[0][6])
plt.subplot(1, 2, 2)
plt.imshow(ref_img.squeeze(), cmap='gray')
plt.axis('off')
plt.title('label=%s' % IMG_PATH[1])
plt.show()
# fig1.savefig(fname='./?.svg')
temp, mask = generate_explanation(model=chexnet, input_image=test_img)
fig2 = plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))
plt.axis('off')
plt.title('pred=%.4f' % chexnet.predict(np.expand_dims(test_img, axis=0))[0][6])
plt.subplot(1, 2, 2)
plt.imshow(ref_img.squeeze(), cmap='gray')
plt.axis('off')
plt.title('label=%s' % IMG_PATH[1])
plt.show()
# fig1.savefig(fname='./?.svg')