-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathCheXpert_data_loader.py
39 lines (34 loc) · 1.47 KB
/
CheXpert_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os, shutil
# find normal CXR images from the metadata csv file
file = open(file='path/to/CheXpert-v1.0-small/train.csv', mode='r')
header = file.readline()
normal_cxr_cases = list()
records = file.readlines()
for record in records:
this_record = record.split(',')
if this_record[4] is not "":
if this_record[5]:
normal_cxr_cases.append(this_record[0])
print('number of total normal cases:', len(normal_cxr_cases))
# scrape all image folders, find normal CXR images and copy/rename into the target path
target_path = './chexpert_normal/'
path = 'path/to/CheXpert-v1.0-small/train/'
image_count = 0
for folder_name in os.listdir(path=path):
subpath = path + folder_name + '/'
for subfolder_name in os.listdir(path=subpath):
img_folder = subpath + subfolder_name + '/'
for img_name in os.listdir(path=img_folder):
if img_name[0] is not '.':
this_img = img_folder + img_name
for case in normal_cxr_cases:
if this_img.find(case) is not -1:
case_number = case[case.rfind('patient')+7:case.rfind('study')-1]
img_name = this_img[this_img.rfind('/'):]
shutil.copy(src=this_img, dst=target_path)
os.rename(src=target_path+img_name, dst=target_path+str(image_count)+'.jpg')
image_count += 1
break
# break
# break
# break