-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsegmentation_qualitative_results_figure.m
112 lines (90 loc) · 3.87 KB
/
segmentation_qualitative_results_figure.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
% generates fig . 8 of the paper
% This code assumes that the several segmentation experiments in the
% saliency folder have been completed and all the results are stored in
% saliency/data/ferrari/
FIGS_PATH = 'genfigs/';
% Segmentation results figure.
% We'll use 4 images and for each of them show
% the resized image, the ground truth segmentation mask, our result, result
% using saliency, result using deconvnet, the center seed baseline.
addpath('saliency');
NUM_IMAGES = 5;
ROOT = 'saliency/';
SALIENCY = 'sal-ks-101-alex';
DECONVNET = 'sal-dc-101-alex';
HYBRID = 'sal-am-101-alex';
BASELINE = 'sal-baseline3-101';
opts = struct();
opts.randomizeWeights = false;
opts.gpu = false;
opts.relus_to_change = 1:100;
opts.pools_to_change = 1:5;
opts.convs_to_change = 1:100;
opts.neuron_I = inf;
opts.neuron_J = inf;
opts.neuron_channel = inf;
opts.modelPath = 'models/imagenet-caffe-alex.mat';
opts.layer = 20;
pad_fn = @(x) padarray(x, [1,1], 1, 'both');
imdb = load('saliency/data/ferrari/imdb.mat');
%image_ids = randi(numel(imdb.images.name), [1, NUM_IMAGES]); % Randomly pick 5 images
image_ids = [ 3241, 3178, 1678, 2803, 732]; % There were generated by a call to the above line
image_names = cell(NUM_IMAGES, 1);
seg_names = cell(NUM_IMAGES, 1);
result_names = cell(NUM_IMAGES, 4);
viz = cell(NUM_IMAGES,1);
for i=1:NUM_IMAGES
cur_img_name = imdb.images.name{image_ids(i)};
image_names{i} = [ROOT, sprintf(imdb.paths.image, cur_img_name)];
seg_names{i} = [ROOT, sprintf(imdb.paths.seg, cur_img_name, 1)];
result_names{i,1} = [ROOT, 'data/ferrari/', SALIENCY, '/', cur_img_name, '.mat'];
result_names{i,2} = [ROOT, 'data/ferrari/', DECONVNET, '/', cur_img_name, '.mat'];
result_names{i,3} = [ROOT, 'data/ferrari/', HYBRID, '/', cur_img_name, '.mat'];
result_names{i,4} = [ROOT, 'data/ferrari/', BASELINE, '/', cur_img_name, '.mat'];
opts.imagePath = image_names{i};
% Original image
img = ksresize(imread(image_names{i}));
viz_img = im2single(uint8(img));
% Ground truth segmentation
sz = size(img);
seg = imresize(imread(seg_names{i}), [sz(1), sz(2)], 'nearest');
viz_gt = im2single(uint8(bsxfun(@times, single(seg), img)));
% saliency
res = load(result_names{i,1});
viz_saliency = vl_imsc(bsxfun(@times, single(res.seg), img));
%opts.algorithm = 'saliency';
%[~, mask_saliency, ~] ...
% = hand_specified_neuron_viz_fn(opts);
%mask_saliency = vl_imsc_am(mask_saliency);
mask_saliency = vl_imsc_am(res.mask_signed);
% Deconvnet
res = load(result_names{i,2});
viz_deconvnet = vl_imsc(bsxfun(@times, single(res.seg), img));
%opts.algorithm = 'deconvnet';
%[~, mask_deconvnet, ~] ...
% = hand_specified_neuron_viz_fn(opts);
%mask_deconvnet = vl_imsc_am(mask_deconvnet);
mask_deconvnet = vl_imsc_am(res.mask_signed);
% Hybrid
res = load(result_names{i,3});
viz_am = vl_imsc(bsxfun(@times, single(res.seg), img));
%opts.algorithm = 'TTT';
%[~, mask_am, ~] ...
% = hand_specified_neuron_viz_fn(opts);
%mask_am = vl_imsc_am(mask_am);
mask_am = vl_imsc_am(res.mask_signed);
% Baseline 2
res = load(result_names{i,4});
viz_baseline = vl_imsc(bsxfun(@times, single(res.seg), img));
%mask_baseline = vl_imsc(baseline2(img));
mask_baseline = repmat(vl_imsc(res.mask), [1,1,3]);
viz{i} = [cat(2, pad_fn(viz_gt), pad_fn(viz_am), pad_fn(viz_saliency), pad_fn(viz_deconvnet), pad_fn(viz_baseline));
cat(2, pad_fn(viz_img), pad_fn(mask_am), pad_fn(mask_saliency), pad_fn(mask_deconvnet), pad_fn(mask_baseline))];
end
viz_sizes = cell2mat(cellfun(@(x) size(x), viz, 'UniformOutput', false));
chosen_size = min(viz_sizes(:,2));
for i=1:NUM_IMAGES
viz{i} = imresize(viz{i}, [NaN, chosen_size], 'nearest');
end
final_viz = cat(1, viz{:});
imwrite(final_viz, [FIGS_PATH, 'segmentation_101.png']);