-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhand_specified_neuron_viz_fn.m
398 lines (350 loc) · 12.7 KB
/
hand_specified_neuron_viz_fn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
function [viz, template, opts, NET, img] = hand_specified_neuron_viz_fn(opts)
% This is the main engine - it reads many different options and creates a
% reversed network and visualizes some neuron with that reversed network
%
% opts can be like below :-
%
% randomizeWeights: 0 - whether or not to randomize network weights
%
% gpu: 0 - boolean - whether or not to use the gpu
%
% relus_to_change: [1x100 double] - Which relu's in the network do you want
% to change when creating the reversed architecture. if set to [1] it will
% change the first relu in the network, [1,2] will change the first 2.
% Similarly, [1,3] will change the first and the third relu but skip the
% second one. If left unchanged they do BP in the reversed architecture
%
% pools_to_change: [1 2 3 4 5] - same as above but for pooling layers
%
% convs_to_change: [1x100 double] - same as above but for convs.
%
% neuron_I: Inf - This is the spatial location of which neuron to visualize
% Inf for the maximally active neuron
% -1 for the last row of neurons
% 1/2 or some fraction between 0 and 1 to pick a relative location in the
% spatial field of view
% or an integer to directly specify the neuron location/
%
% neuron_J: Inf
%
% neuron_channel: Inf
%
% Please be very careful when using the special cases (inf, fraction, -1
% etc) ... read the code and debug to check which neuron got picked.
%
% imagePath: 'imagenet12-val/ILSVRC2012_val_00000170.JPEG' - which image to
% visualize over.
%
% modelPath: 'models/imagenet-vgg-verydeep-16.mat' - which forward network
% to visualize
%
% layer: 36 - which layer in the forward network to visualize
%
% algorithm: 'deconvnet' - which algorithm to use. There are many many
% options. Please have a look at the switch case below.
% Prominently - 'deconvnet', 'saliency', 'TTT'(for DeSaliNet) can be used.
%
% Opts can also be a more complete version like
% randomizeWeights: 0
% gpu: 0
% relus_to_change: [1x100 double]
% pools_to_change: [1 2 3 4 5]
% convs_to_change: [1x100 double]
% neuron_I: 1
% neuron_J: 1
% neuron_channel: 159
% imagePath: 'imagenet12-val/ILSVRC2012_val_00000170.JPEG'
% modelPath: 'models/imagenet-vgg-verydeep-16.mat'
% layer: 36
% algorithm: 'deconvnet'
% use_relu_mask: 0
% use_pooling_switches: 1
% relu_backward: 1
% lrn_nobackprop: 1
% conv_exciteonly: 0
% normalize: [function_handle]
% denormalize: @(x)bsxfun(@plus,x,NET.meta.normalization.averageImage)
%
% Again, since there are many options it is best to run an image and step
% through the code to see what is happening to make sure it is constructing
% the right network.
%
% Author: Aravindh Mahendran (Copyright 2016-17)
% University of Oxford
if(~isfield(opts, 'gpu'))
opts.gpu = false;
end
%% Settings based on the chosen algorithm
switch opts.algorithm
case {'deconvnet_noisy'}
opts.use_noisy_relu = true;
opts.lrn_nobackprop = true;
case {'deconvnet', 'FTT'}
opts.use_relu_mask = false;
opts.use_pooling_switches = true;
opts.relu_backward = true;
opts.lrn_nobackprop = true;
case {'hybrid', 'TTT'}
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = true;
opts.lrn_nobackprop = true;
case 'TTTF'
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = true;
opts.lrn_nobackprop = false;
case 'TTTFT'
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = true;
opts.lrn_nobackprop = false;
opts.conv_exciteonly = true;
case {'saliency'}
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = false;
opts.lrn_nobackprop = false;
case {'TTF'}
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = false;
opts.lrn_nobackprop = true; % This is the only bit that is different from 'Saliency'
case {'TTFF'}
opts.use_relu_mask = true;
opts.use_pooling_switches = true;
opts.relu_backward = false;
opts.lrn_nobackprop = false; % we want to do the conservative and non conservative backprop together
case {'deconvnet_unpooltocenter', 'FFT'}
opts.use_relu_mask = false;
opts.use_pooling_switches = false;
opts.relu_backward = true;
opts.lrn_nobackprop = true;
case 'TFT'
opts.use_relu_mask = true;
opts.use_pooling_switches = false;
opts.relu_backward = true;
opts.lrn_nobackprop = true;
case 'TFF'
opts.use_relu_mask = true;
opts.use_pooling_switches = false;
opts.relu_backward = false;
opts.lrn_nobackprop = true;
case 'FFF'
opts.use_relu_mask = false;
opts.use_pooling_switches = false;
opts.relu_backward = false;
opts.lrn_nobackprop = true;
case 'FTF'
opts.use_relu_mask = false;
opts.use_pooling_switches = true;
opts.relu_backward = false;
opts.lrn_nobackprop = true;
otherwise
error('Unknown algorithm %s\n', opts.algorithm);
end
if(strcmp(opts.algorithm, 'TTTFT'))
opts.conv_exciteonly = true;
else
opts.conv_exciteonly = false;
end
%% Load the network and prune down the layers
NET = load(opts.modelPath);
NET = vl_simplenn_tidy(NET);
NET.layers = NET.layers(1:opts.layer);
%% Randomize the layer weights
if(opts.randomizeWeights)
for i=1:numel(NET.layers)
if(strcmp(NET.layers{i}.type, 'conv'))
type = 'single';
sz = size(NET.layers{i}.weights{1});
h = sz(1); w = sz(2); in = sz(3); out = sz(4);
%sc = sqrt(2/(h*w*out)) ;
%NET.layers{i}.weights{1} = randn(h, w, in, out, type)*sc ;
%NET.layers{i}.weights{2} = zeros(out, 1, type);
sc = 0.01;
NET.layers{i}.weights{1} = randn(h, w, in, out, type)*sc;
NET.layers{i}.weights{2} = zeros(out, 1, type);
end
end
end
%% Create a network without the local response normalization layers.
% This is used to find receptive field sizes for the hybrid and deconvnet method
NET_nolrn = NET;
relu_layer.type = 'relu';
relu_layer.leak = 0;
for i=1:numel(NET_nolrn.layers)
if strcmp(NET_nolrn.layers{i}.type, 'normalize')
NET_nolrn.layers{i} = relu_layer;
end
if strcmp(NET_nolrn.layers{i}.type, 'lrn')
NET_nolrn.layers{i} = relu_layer;
end
if strcmp(NET_nolrn.layers{i}.type, 'conv')
NET_nolrn.layers{i}.weights{1} = ones(size(NET.layers{i}.weights{1}), 'single');
NET_nolrn.layers{i}.weights{2} = ones(size(NET.layers{i}.weights{2}), 'single');
end
end
NET_nolrn = vl_simplenn_tidy(NET_nolrn);
%% Collect network information
% This is also mostly for receptive field measurement
NET_info = vl_simplenn_display(NET, 'inputSize', [NET.meta.normalization.imageSize(1:3), 1]);
NET_nolrn_info = vl_simplenn_display(NET_nolrn, 'inputSize', [NET.meta.normalization.imageSize(1:3), 1]);
NUM_CHANNELS = NET_info.dataSize(3, end);
%% Change the RELUs based on the opts
if(~isempty(opts.relus_to_change))
counter = 0;
for i=1:numel(NET.layers)
if (strcmp(NET.layers{i}.type, 'relu'))
counter = counter + 1;
if(find(opts.relus_to_change == counter))
if(isfield('opts', 'use_noisy_relu') && opts.use_noisy_relu)
NET.layers{i}.type = 'relu_noisy';
elseif(opts.use_relu_mask && opts.relu_backward)
NET.layers{i}.type = 'relu_eccv16';
elseif (~opts.use_relu_mask && opts.relu_backward)
NET.layers{i}.type = 'relu_deconvnet';
elseif (~opts.use_relu_mask && ~opts.relu_backward)
NET.layers{i}.type = 'relu_nobackprop';
end
end
end
end
end
if(opts.conv_exciteonly && ~isempty(opts.convs_to_change))
counter = 0;
for i=1:numel(NET.layers)
if (strcmp(NET.layers{i}.type, 'conv'))
counter = counter + 1;
if(find(opts.convs_to_change == counter))
NET.layers{i}.type = 'conv_exciteonly';
end
end
end
end
if(~opts.use_pooling_switches && ~isempty(opts.pools_to_change))
counter = 0;
for i=1:numel(NET.layers)
if (strcmp(NET.layers{i}.type, 'pool'))
counter = counter + 1;
if(find(opts.pools_to_change == counter))
NET.layers{i}.type = 'pool_center';
end
end
end
end
if(opts.lrn_nobackprop)
for i=1:numel(NET.layers)
if strcmp(NET.layers{i}.type, 'normalize')
NET.layers{i}.type = 'normalize_nobackprop';
end
if strcmp(NET.layers{i}.type, 'lrn')
NET.layers{i}.type = 'lrn_nobackprop';
end
end
end
%% Move NET to GPU
if(opts.gpu)
NET_GPU = vl_simplenn_move(NET, 'gpu');
else
NET_GPU = NET;
end
%% Setup the variables and functions for operating the network
opts.normalize = @(x) bsxfun(@minus, single(resizencrop(x, NET.meta.normalization.imageSize(1:2))), NET.meta.normalization.averageImage);
opts.denormalize = @(x) bsxfun(@plus, x, NET.meta.normalization.averageImage);
%% Run over the neurons and generate the visuals.
% read the image and evaluate the network on it
img = imread(opts.imagePath);
if(opts.gpu)
img_pp = gpuArray(opts.normalize(img)); %, NET.meta.normalization.averageImage);
else
img_pp = opts.normalize(img);
end
sz = NET_info.dataSize(:, end)';
% set the top derivative to be 1 at the position of maximal response
if(opts.gpu)
dzdy = zeros(sz, 'single', 'gpuArray');
else
dzdy = zeros(sz, 'single');
end
% Pick the neuron baesd on the parameters in opts
if(opts.neuron_I < 1 && opts.neuron_I ~= -1)
opts.neuron_I = max( round(size(dzdy, 1) * opts.neuron_I), 1);
elseif(opts.neuron_I == -1)
opts.neuron_I = size(dzdy, 1);
end
if(opts.neuron_J < 1 && opts.neuron_J ~= -1)
opts.neuron_J = max(round(size(dzdy, 2) * opts.neuron_J), 1);
elseif(opts.neuron_J == -1)
opts.neuron_J = size(dzdy, 2);
end
if(isinf(opts.neuron_I)) % find the maximally firing neuron
res = vl_simplenn(NET_GPU, img_pp);
if(isinf(opts.neuron_channel))
[~, argmax] = max(res(end).x(:));
[opts.neuron_I, opts.neuron_J, opts.neuron_channel] = ...
ind2sub(size(res(end).x), argmax);
else
[~, argmax] = max( ...
reshape( res(end).x(:, :, opts.neuron_channel), [], 1) );
[opts.neuron_I, opts.neuron_J, ~] = ind2sub(size(res(end).x), argmax);
end
else
res = vl_simplenn(NET_GPU, img_pp);
if(isinf(opts.neuron_channel))
[~, opts.neuron_channel] = max( ...
res(end).x(opts.neuron_I, opts.neuron_J, :), [], 3);
end
end
if (opts.neuron_channel ~= -1)
dzdy(opts.neuron_I, opts.neuron_J, opts.neuron_channel) = 1;
res2 = vl_simplenn(NET_GPU, img_pp, dzdy);
template = gather(res2(1).dzdx);
else
while(true)
neuron_channel = randi(sz(3), 1);
dzdy(opts.neuron_I, opts.neuron_J, neuron_channel) = 1;
res2 = vl_simplenn(NET_GPU, img_pp, dzdy);
template = gather(res2(1).dzdx);
pos = find(template ~= 0, 1);
if(isempty(pos))
dzdy(opts.neuron_I, opts.neuron_J, neuron_channel) = 0;
else
break;
end
end
opts.neuron_channel = neuron_channel;
end
%rf_start_pos = [opts.neuron_I - 1; opts.neuron_J - 1] .* ...
% NET_nolrn_info.receptiveFieldStride(:, end) + ...
% NET_nolrn_info.receptiveFieldOffset(:, end) - ...
% ceil(NET_nolrn_info.receptiveFieldSize(:, end) / 2) + 1;
%rf_start_pos = max(rf_start_pos, 1);
%
%rf_end_pos = min(rf_start_pos + NET_nolrn_info.receptiveFieldSize(:, end) - 1, ...
% NET.meta.normalization.imageSize(1:2)') ;
%
%viz = vl_imsc(template(rf_start_pos(1):rf_end_pos(1), ...
% rf_start_pos(2):rf_end_pos(2), :));
img = resizencrop(img, NET.meta.normalization.imageSize(1:2));
rf_start_pos = [opts.neuron_I - 1; opts.neuron_J - 1] .* ...
NET_nolrn_info.receptiveFieldStride(:, end) + ...
NET_nolrn_info.receptiveFieldOffset(:, end) - ...
ceil(NET_nolrn_info.receptiveFieldSize(:, end) / 2) + 1;
rf_start_pos =ceil(rf_start_pos);
rf_end_pos = rf_start_pos + NET_nolrn_info.receptiveFieldSize(:, end) - 1;
TOP = max(1 - rf_start_pos(1), 0);
LEFT = max(1 - rf_start_pos(2), 0);
template_t = padarray(template, [TOP, LEFT], 0, 'pre');
img = padarray(img, [TOP, LEFT, 0], 0, 'pre');
rf_start_pos = rf_start_pos + [TOP; LEFT];
rf_end_pos = rf_end_pos + [TOP; LEFT];
BOTTOM = max(rf_end_pos(1) - NET.meta.normalization.imageSize(1), 0);
RIGHT = max(rf_end_pos(2) - NET.meta.normalization.imageSize(2), 0);
template_t = padarray(template_t, [BOTTOM, RIGHT], 0, 'post');
img = padarray(img, [BOTTOM, RIGHT, 0], 0, 'post');
viz = vl_imsc(template_t(rf_start_pos(1):rf_end_pos(1), ...
rf_start_pos(2):rf_end_pos(2), :));
img = uint8(img(rf_start_pos(1):rf_end_pos(1), ...
rf_start_pos(2):rf_end_pos(2), :));
end