-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlrs_single.m
100 lines (87 loc) · 2.66 KB
/
lrs_single.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
function [X, cost] = lrs_single(Y, k, lam0, lam1, mu, pen, Nit,p)
% [X, cost] = lrs_single(Y, k, lam0, lam1, mu, pen, Nit)
% This function estimates the matrix X, which is sparse and low-rank,
% from the noisy input matrix Y.
%
% Input:
% Y - Noisy matrix
% k - Constant for selecting a0 along the line. (0 < k < 1)
% lam0 - Regularization parameter for Singular value penalty
% lam1 - Regularization parameter for Sparse penalty
% mu - ADMM parameters (step sizes).
% pen - Penalty function ('L1','atan','log')
% Nit - Number of iterations
%
% Output:
% X - Estimated sparse and low-rank matrix
% cost - Cost function history
%
% Last Edit: 31st Aug, 2015.
% Contact: Ankit Parekh ankit.parekh@nyu.edu
%
% Please cite as:
% Improved Sparse and Low-Rank Matrix Estimation. (PrePrint)
% A. Parekh and I. W. Selesnick. Preprint https://arxiv.org/abs/1605.00042
switch pen
case 'log'
phi = @(x, a) (1/a) * log10(1 + a*abs(x));
case 'atan'
phi = @(x, a) 2./(a*sqrt(3)) .* (atan((2*a.*abs(x)+1)/sqrt(3)) - pi/6);
case 'l1'
phi = @(x,a) abs(x);
case 'lp'
phi = @(x,p) abs(x).^p;
case 'firm'
phi = @(x,a) zeros(size(x)) +...
(abs(x) < (1/a)).* (abs(x) - (a/2)*x.^2) + ...
(abs(x) >= (1/a)) .* (1/(2*a));
end
if nargin < 8
p = 0;
end
if lam0
a0 = k/lam0;
else
a0 = 0;
end
if lam1
a1 = (1-a0*lam0) / (lam1);
else
a1 = 0;
end
X = zeros(size(Y));
D = X;
U = X;
cost = zeros(Nit,1);
alpha = 1/(1+mu);
for i = 1:Nit
%X-step
if a1 == 0
X = thresh(alpha * (Y + mu * (U + D)),(lam1*alpha),a1,'l1',1);
else
X = thresh(alpha * (Y + mu * (U + D)),(lam1*alpha),a1,pen,p);
end
%U-step
[P,Sigma,Q] = svd(X-D,'econ');
if a0 == 0
U = P * diag(thresh(diag(Sigma),lam0/mu,a0,'l1',1)) * Q';
else
U = P * diag(thresh(diag(Sigma),lam0/mu,a0,pen,p)) * Q';
end
%D-step
D = D - (X-U);
%Calculate cost function history
if strcmp(pen,'lp')
cost(i) = 0.5*norm(Y-X,'fro')^2 + ...
lam0 * sum(phi(svd(X,'econ'),p)) + ...
lam1 * sum(sum(phi(X,p),1));
else
cost(i) = 0.5*norm(Y-X,'fro')^2 + ...
lam0*sum(phi(svd(X,'econ'),a0)) + ...
+ lam1*sum(sum(phi(X,a1),1));
end
end
if issparse(Y)
X = sparse(X);
end
end