我们首先安装 Goldsberry
包,项目源地址:
/~https://github.com/bradleyfay/py-Goldsberry
使用 pip
安装:
pip install py-goldsberry
该包的接口与 pandas
兼容,可以与 pandas
的 DataFrame
一起使用。
In [1]:
import goldsberry as gb
import pandas as pd
当前使用的版本号为:
In [2]:
gb.__version__
Out[2]:
'0.8.0.1'
获得 2015-2016
赛季运动员的名单:
In [3]:
players = gb.PlayerList().players()
players = pd.DataFrame(players)
players.head()
Out[3]:
DISPLAY_LAST_COMMA_FIRST | FROM_YEAR | GAMES_PLAYED_FLAG | PERSON_ID | PLAYERCODE | ROSTERSTATUS | TEAM_ABBREVIATION | TEAM_CITY | TEAM_CODE | TEAM_ID | TEAM_NAME | TO_YEAR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Acy, Quincy | 2012 | Y | 203112 | quincy_acy | 1 | SAC | Sacramento | kings | 1610612758 | Kings | 2015 |
1 | Adams, Jordan | 2014 | Y | 203919 | jordan_adams | 1 | MEM | Memphis | grizzlies | 1610612763 | Grizzlies | 2015 |
2 | Adams, Steven | 2013 | Y | 203500 | steven_adams | 1 | OKC | Oklahoma City | thunder | 1610612760 | Thunder | 2015 |
3 | Afflalo, Arron | 2007 | Y | 201167 | arron_afflalo | 1 | NYK | New York | knicks | 1610612752 | Knicks | 2015 |
4 | Ajinca, Alexis | 2008 | Y | 201582 | alexis_ajinca | 1 | NOP | New Orleans | pelicans | 1610612740 | Pelicans | 2015 |
球员总数为:
In [4]:
print len(players)
464
通过查询特定的 TEAM_ABBREVIATION
,我们可以查看某个球队本赛季的球员,比如 2014-2015
赛季的总冠军金州勇士 GSW
:
In [5]:
gsw_players = players.ix[players["TEAM_ABBREVIATION"] == "GSW"]
gsw_players[["DISPLAY_LAST_COMMA_FIRST", "FROM_YEAR", "TEAM_ABBREVIATION", "TEAM_CITY", "TEAM_NAME", "PERSON_ID"]]
Out[5]:
DISPLAY_LAST_COMMA_FIRST | FROM_YEAR | TEAM_ABBREVIATION | TEAM_CITY | TEAM_NAME | PERSON_ID | |
---|---|---|---|---|---|---|
30 | Barbosa, Leandro | 2003 | GSW | Golden State | Warriors | 2571 |
33 | Barnes, Harrison | 2012 | GSW | Golden State | Warriors | 203084 |
52 | Bogut, Andrew | 2005 | GSW | Golden State | Warriors | 101106 |
86 | Clark, Ian | 2013 | GSW | Golden State | Warriors | 203546 |
103 | Curry, Stephen | 2009 | GSW | Golden State | Warriors | 201939 |
135 | Ezeli, Festus | 2012 | GSW | Golden State | Warriors | 203105 |
164 | Green, Draymond | 2012 | GSW | Golden State | Warriors | 203110 |
209 | Iguodala, Andre | 2004 | GSW | Golden State | Warriors | 2738 |
262 | Livingston, Shaun | 2004 | GSW | Golden State | Warriors | 2733 |
263 | Looney, Kevon | 2015 | GSW | Golden State | Warriors | 1626172 |
279 | McAdoo, James Michael | 2014 | GSW | Golden State | Warriors | 203949 |
377 | Rush, Brandon | 2008 | GSW | Golden State | Warriors | 201575 |
398 | Speights, Marreese | 2008 | GSW | Golden State | Warriors | 201578 |
414 | Thompson, Jason | 2008 | GSW | Golden State | Warriors | 201574 |
415 | Thompson, Klay | 2011 | GSW | Golden State | Warriors | 202691 |
通过 DISPLAY_LAST_COMMA_FIRST
,我们来查询宣布本赛季之后退役的科比布莱恩特(Kobe, Bryant
)的信息:
In [6]:
kobe = players.ix[players["DISPLAY_LAST_COMMA_FIRST"].str.contains("Kobe")]
kobe
Out[6]:
DISPLAY_LAST_COMMA_FIRST | FROM_YEAR | GAMES_PLAYED_FLAG | PERSON_ID | PLAYERCODE | ROSTERSTATUS | TEAM_ABBREVIATION | TEAM_CITY | TEAM_CODE | TEAM_ID | TEAM_NAME | TO_YEAR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
64 | Bryant, Kobe | 1996 | Y | 977 | kobe_bryant | 1 | LAL | Los Angeles | lakers | 1610612747 | Lakers | 2015 |
为了方便,我们将 Kobe
的 ID
放到变量中去:
In [7]:
kobe_id = 977
我们来看本赛季 Kobe
的比赛记录:
In [8]:
kobe_logs = gb.player.game_logs(kobe_id)
kobe_logs = pd.DataFrame(kobe_logs.logs())
# 最近五场比赛
kobe_logs.head()
Out[8]:
AST | BLK | DREB | FG3A | FG3M | FG3_PCT | FGA | FGM | FG_PCT | FTA | ... | PF | PLUS_MINUS | PTS | Player_ID | REB | SEASON_ID | STL | TOV | VIDEO_AVAILABLE | WL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 0 | 6 | 7 | 3 | 0.429 | 16 | 5 | 0.313 | 4 | ... | 2 | -19 | 17 | 977 | 6 | 22015 | 1 | 3 | 1 | L |
1 | 0 | 0 | 4 | 14 | 4 | 0.286 | 25 | 6 | 0.240 | 4 | ... | 0 | -6 | 19 | 977 | 5 | 22015 | 0 | 0 | 1 | L |
2 | 4 | 1 | 1 | 14 | 4 | 0.286 | 28 | 9 | 0.321 | 3 | ... | 4 | -2 | 25 | 977 | 2 | 22015 | 0 | 2 | 1 | L |
3 | 2 | 0 | 9 | 11 | 4 | 0.364 | 24 | 10 | 0.417 | 4 | ... | 0 | 16 | 27 | 977 | 12 | 22015 | 2 | 1 | 1 | W |
4 | 5 | 0 | 3 | 11 | 7 | 0.636 | 21 | 10 | 0.476 | 12 | ... | 3 | 6 | 38 | 977 | 5 | 22015 | 2 | 2 | 1 | W |
5 rows × 27 columns
截至到全明星赛前,本赛季 Kobe
一共参加了 44 场比赛,其场均数据为:
In [9]:
kobe_logs.Game_ID
Out[9]:
0 0021500795
1 0021500776
2 0021500767
3 0021500747
4 0021500734
5 0021500720
6 0021500697
7 0021500662
8 0021500653
9 0021500638
10 0021500614
11 0021500608
12 0021500592
13 0021500576
14 0021500549
15 0021500539
16 0021500476
17 0021500458
18 0021500455
19 0021500440
20 0021500435
21 0021500422
22 0021500385
23 0021500370
24 0021500349
25 0021500342
26 0021500325
27 0021500308
28 0021500301
29 0021500286
30 0021500269
31 0021500263
32 0021500253
33 0021500244
34 0021500214
35 0021500201
36 0021500188
37 0021500151
38 0021500135
39 0021500095
40 0021500077
41 0021500059
42 0021500045
43 0021500031
44 0021500017
Name: Game_ID, dtype: object
In [10]:
def show_avg_info(avg):
print "得分:{:.1f}".format(avg.ix["PTS"])
print "篮板:{:.1f}".format(avg.ix["REB"])
print "助攻:{:.1f}".format(avg.ix["AST"])
print "盖帽:{:.1f}".format(avg.ix["BLK"])
print "时间:{:.1f}".format(avg.ix["MIN"])
print "抢断:{:.1f}".format(avg.ix["STL"])
print "失误:{:.1f}".format(avg.ix["TOV"])
print "犯规:{:.1f}".format(avg.ix["PF"])
print "投篮:{:.1f}%".format(avg.ix["FGM"] * 100 / avg.ix["FGA"])
print "三分:{:.1f}%".format(avg.ix["FG3M"] * 100 / avg.ix["FG3A"])
print "罚篮:{:.1f}%".format(avg.ix["FTM"] * 100 / avg.ix["FTA"])
print "后篮板:{:.1f}".format(avg.ix["DREB"])
print "前篮板:{:.1f}".format(avg.ix["OREB"])
print "正负值:{:.1f}".format(avg.ix["PLUS_MINUS"])
show_avg_info(kobe_logs.mean())
得分:16.9
篮板:4.2
助攻:3.4
盖帽:0.2
时间:29.3
抢断:1.0
失误:2.2
犯规:1.9
投篮:34.9%
三分:28.0%
罚篮:80.3%
后篮板:3.5
前篮板:0.7
正负值:-7.9
再看一下史提芬库里的场均数据(不要问我为什么跪着看球):
In [11]:
curry_id = 201939
curry_logs = gb.player.game_logs(curry_id)
curry_logs = pd.DataFrame(curry_logs.logs())
show_avg_info(curry_logs.mean())
得分:29.8
篮板:5.3
助攻:6.6
盖帽:0.2
时间:33.9
抢断:2.1
失误:3.3
犯规:2.0
投篮:50.8%
三分:45.4%
罚篮:91.2%
后篮板:4.5
前篮板:0.9
正负值:15.5
当然我们也可以对比一下职业生涯的数据:
In [12]:
kobe_career = gb.player.career_stats(kobe_id)
curry_career = gb.player.career_stats(curry_id)
职业生涯最高:
In [13]:
def show_career_high(career):
career_high = pd.DataFrame(career.career_high()).ix[[0,1,5]]
print career_high[["GAME_DATE", "STAT", "STAT_VALUE", "VS_TEAM_CITY", "VS_TEAM_NAME"]]
print "Kobe"
show_career_high(kobe_career)
print "Curry"
show_career_high(curry_career)
Kobe
GAME_DATE STAT STAT_VALUE VS_TEAM_CITY VS_TEAM_NAME
0 JAN 22 2006 PTS 81 Toronto Raptors
1 JAN 24 2010 REB 16 Toronto Raptors
5 JAN 15 2015 AST 17 Cleveland Cavaliers
Curry
GAME_DATE STAT STAT_VALUE VS_TEAM_CITY VS_TEAM_NAME
0 FEB 27 2013 PTS 54 New York Knicks
1 DEC 28 2015 REB 14 Sacramento Kings
5 DEC 27 2013 AST 16 Phoenix Suns
本赛季最高:
In [14]:
def show_season_high(career):
career_high = pd.DataFrame(career.season_high()).ix[[0,1,5]]
print career_high[["GAME_DATE", "STAT", "STAT_VALUE", "VS_TEAM_CITY", "VS_TEAM_NAME"]]
print "Kobe"
show_season_high(kobe_career)
print "Curry"
show_season_high(curry_career)
Kobe
GAME_DATE STAT STAT_VALUE VS_TEAM_CITY VS_TEAM_NAME
0 FEB 02 2016 PTS 38 Minnesota Timberwolves
1 FEB 04 2016 REB 12 New Orleans Pelicans
5 NOV 15 2015 AST 9 Detroit Pistons
Curry
GAME_DATE STAT STAT_VALUE VS_TEAM_CITY VS_TEAM_NAME
0 OCT 31 2015 PTS 53 New Orleans Pelicans
1 DEC 28 2015 REB 14 Sacramento Kings
5 JAN 25 2016 STL 5 San Antonio Spurs
In [15]:
game_ids = gb.GameIDs()
game_ids = pd.DataFrame(game_ids.game_list())
game_ids.head()
Out[15]:
AST | BLK | DREB | FG3A | FG3M | FG3_PCT | FGA | FGM | FG_PCT | FTA | ... | PTS | REB | SEASON_ID | STL | TEAM_ABBREVIATION | TEAM_ID | TEAM_NAME | TOV | VIDEO_AVAILABLE | WL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 28 | 4 | 45 | 29 | 8 | 0.276 | 124 | 56 | 0.452 | 46 | ... | 147 | 64 | 22015 | 7 | DET | 1610612765 | Detroit Pistons | 11 | 1 | W |
1 | 30 | 2 | 36 | 23 | 9 | 0.391 | 87 | 53 | 0.609 | 34 | ... | 142 | 46 | 22015 | 9 | SAC | 1610612758 | Sacramento Kings | 15 | 1 | W |
2 | 34 | 2 | 30 | 21 | 9 | 0.429 | 86 | 52 | 0.605 | 13 | ... | 123 | 38 | 22015 | 10 | SAS | 1610612759 | San Antonio Spurs | 13 | 1 | W |
3 | 29 | 6 | 36 | 35 | 16 | 0.457 | 95 | 52 | 0.547 | 15 | ... | 131 | 46 | 22015 | 10 | GSW | 1610612744 | Golden State Warriors | 15 | 1 | W |
4 | 34 | 8 | 38 | 31 | 8 | 0.258 | 104 | 52 | 0.500 | 16 | ... | 122 | 46 | 22015 | 10 | SAC | 1610612758 | Sacramento Kings | 20 | 1 | L |
5 rows × 29 columns
In [16]:
from IPython.display import Image
Image("http://stats.nba.com/media/players/230x185/"+str(kobe_id)+".png")
Out[16]:
In [17]:
Image("http://stats.nba.com/media/players/230x185/"+str(curry_id)+".png")
Out[17]:
修改了 goldsberry\player\_Player.py
代码中的错误,使之能够查询退役球员的信息,修改后的代码在本文件夹下,放到安装目录之后下面的代码均可以运行:
In [18]:
from goldsberry.player import _Player as pl_old
1997 年的球员列表:
In [19]:
players_1997 = pl_old.PlayerList(1997)
players_1997 = pd.DataFrame(players_1997)
乔丹的球员 ID:
In [20]:
jordan_id = players_1997["PERSON_ID"].ix[players_1997["DISPLAY_LAST_COMMA_FIRST"].str.contains("Jordan, Michael")]
jordan_id = jordan_id[jordan_id.index[0]]
jordan_id
Out[20]:
893
乔丹在 1997-1998 赛季常规赛表现:
In [21]:
jordan_logs_1997 = pl_old.game_logs(jordan_id, season="1997")
jordan_logs_1997 = pd.DataFrame(jordan_logs_1997.logs())
show_avg_info(jordan_logs_1997.mean())
得分:28.7
篮板:5.8
助攻:3.5
盖帽:0.5
时间:38.9
抢断:1.7
失误:2.3
犯规:1.8
投篮:46.5%
三分:23.8%
罚篮:78.4%
后篮板:4.2
前篮板:1.6
正负值:7.3
乔丹在 1997-1998 赛季季后赛表现:
In [22]:
jordan_logs_1997 = pl_old.game_logs(jordan_id, season="1997", seasontype=2)
jordan_logs_1997 = pd.DataFrame(jordan_logs_1997.logs())
show_avg_info(jordan_logs_1997.mean())
得分:32.4
篮板:5.1
助攻:3.5
盖帽:0.6
时间:41.0
抢断:1.5
失误:2.1
犯规:2.2
投篮:46.2%
三分:30.2%
罚篮:81.2%
后篮板:3.5
前篮板:1.6
正负值:7.5
头像:
In [23]:
Image("http://stats.nba.com/media/players/230x185/"+str(jordan_id)+".png")
Out[23]: