From a65bf340d9faf1bdb2ce9e3eb4a7bf6e5707cb37 Mon Sep 17 00:00:00 2001 From: arangasa <76030063+arangasa@users.noreply.github.com> Date: Sat, 18 Sep 2021 04:05:15 +0530 Subject: [PATCH] [ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear (#9028) * [ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear * [ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear * [ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear * [ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear --- python/tvm/relay/frontend/onnx.py | 25 ++++++++++++++++++++ tests/python/frontend/onnx/test_forward.py | 27 ++++++++++++++++++++++ 2 files changed, 52 insertions(+) diff --git a/python/tvm/relay/frontend/onnx.py b/python/tvm/relay/frontend/onnx.py index c6eed9c64e6c..4d48f5796aca 100644 --- a/python/tvm/relay/frontend/onnx.py +++ b/python/tvm/relay/frontend/onnx.py @@ -3254,6 +3254,8 @@ def _impl_v10(cls, inputs, attr, params): def _impl_v13(cls, inputs, attr, params): data, scale, zp = inputs axis = attr.get("axis", 1) + if len(infer_shape(data)) <= 1: + axis = 0 return _qnn.op.dequantize(data, scale, _op.cast(zp, "int32"), axis) @@ -3428,6 +3430,28 @@ def _impl_v10(cls, inputs, attr, params): return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype) +class QLinearSigmoid(OnnxOpConverter): + """Operator converter for QLinearSigmoid from Microsoft onnxruntime contrib opset.""" + + @classmethod + def _impl_v10(cls, inputs, attr, params): + x = inputs[0] + x_scale = get_scalar(inputs[1], params) + x_zero_point = get_scalar(inputs[2], params, "int32") + y_scale = fold_constant(get_scalar(inputs[3], params)) + y_zero_point = get_scalar(inputs[4], params, "int32") + + dtype = infer_type(x).checked_type.dtype + + ## Apparently, onnxruntime doesn't do this op in integer, they dequantize to fp32 + ## and then requantize after: + ## /~https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/core/ + ## providers/dml/DmlExecutionProvider/src/GraphTransformer.cpp#L245 + x = _qnn.op.dequantize(x, x_scale, x_zero_point) + out = _op.sigmoid(x) + return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype) + + class QLinearConcat(OnnxOpConverter): """Operator converter for QLinearConcat from Microsoft onnxruntime contrib opset.""" @@ -4084,6 +4108,7 @@ def _get_convert_map(opset): "QLinearConcat": QLinearConcat.get_converter(opset), "QLinearAdd": QLinearAdd.get_converter(opset), "QLinearMul": QLinearMul.get_converter(opset), + "QLinearSigmoid": QLinearSigmoid.get_converter(opset), "ConvInteger": ConvInteger.get_converter(opset), "QLinearAveragePool": QLinearAveragePool.get_converter(opset), "QLinearGlobalAveragePool": QLinearGlobalAveragePool.get_converter(opset), diff --git a/tests/python/frontend/onnx/test_forward.py b/tests/python/frontend/onnx/test_forward.py index 3aef9a2a2ceb..91d3911da530 100644 --- a/tests/python/frontend/onnx/test_forward.py +++ b/tests/python/frontend/onnx/test_forward.py @@ -5542,11 +5542,38 @@ def verify_qlinearmul(a_shape, b_shape, c_shape): model = helper.make_model(graph, producer_name="qlinearmul_test") quantize_and_verify_with_ort(model, input_names, [a_shape, b_shape], target, dev) + verify_qlinearmul([7], [7], [7]) verify_qlinearmul([4, 2], [4, 2], [4, 2]) verify_qlinearmul([4, 2], [2], [4, 2]) verify_qlinearmul([5, 1, 7], [2, 7], [5, 2, 7]) +@tvm.testing.parametrize_targets +def test_qlinearsigmoid(target, dev): + def verify_qlinearsigmoid(a_shape): + + a_array = np.random.random(a_shape).astype("float32") + + input_nodes = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape))] + + input_values = [a_array] + + node = helper.make_node("Sigmoid", ["a"], ["B"]) + graph = helper.make_graph( + [node], + "qlinearsigmoid_test", + inputs=input_nodes, + outputs=[helper.make_tensor_value_info("B", TensorProto.FLOAT, list(a_shape))], + ) + model = helper.make_model(graph, producer_name="qlinearsigmoid_test") + quantize_and_verify_with_ort(model, ["a"], [a_shape], target, dev) + + verify_qlinearsigmoid([4, 2]) + verify_qlinearsigmoid([5]) + verify_qlinearsigmoid([3, 4, 5]) + verify_qlinearsigmoid([]) + + @tvm.testing.parametrize_targets def test_random_uniform(target, dev): def get_random_uniform(shape, dtype="float32", high=1.0, low=0.0, seed=None):