From 8110ab3edc88cc0e6a41bde8858e235a7967df01 Mon Sep 17 00:00:00 2001 From: Bartosz Kuncer Date: Tue, 5 Apr 2022 23:02:09 +0200 Subject: [PATCH] [v1.9.x][submodule] Upgrade oneDNN to the top of rls-v2.4 branch --- 3rdparty/mkldnn | 2 +- src/operator/nn/mkldnn/mkldnn_convolution.cc | 64 +++++++++----------- 2 files changed, 30 insertions(+), 36 deletions(-) diff --git a/3rdparty/mkldnn b/3rdparty/mkldnn index 145c4b50196a..5818c40f07bd 160000 --- a/3rdparty/mkldnn +++ b/3rdparty/mkldnn @@ -1 +1 @@ -Subproject commit 145c4b50196ac90ec1b946fb80cb5cef6e7d2d35 +Subproject commit 5818c40f07bdb6307f9bc64e929836fe036da644 diff --git a/src/operator/nn/mkldnn/mkldnn_convolution.cc b/src/operator/nn/mkldnn/mkldnn_convolution.cc index 829b3e05f95b..856ced057ba9 100644 --- a/src/operator/nn/mkldnn/mkldnn_convolution.cc +++ b/src/operator/nn/mkldnn/mkldnn_convolution.cc @@ -112,41 +112,35 @@ std::shared_ptr GetConvFwdImpl( int mask = (param.requantize_scales.size() > 1) ? 2 : 0; attr.set_output_scales(mask, param.requantize_scales); } - auto GetConvFwdPd = - [¶m, &data, &weights, &output, &attr](const mkldnn::convolution_forward::desc& desc) { - auto engine = CpuEngine::Get()->get_engine(); - try { - // MKLDNN introduced padded formats since 0.15 which require more memory compared to the - // actual size of the tensor. Currently, MKLDNN operators still reuse memory from memory - // planning, so here we need to select a suboptimal kernel for computation that has the - // expected memory size requirements - auto conv_pd = - std::make_shared(desc, attr, engine); - while (conv_pd->dst_desc().get_size() != GetArraySize(output) || - conv_pd->src_desc().get_size() != GetArraySize(data) || - (!param.mkldnn_param.quantized && - conv_pd->weights_desc().get_size() != GetArraySize(weights)) || - // With the upgrade of MKLDNN to version 2.4+ - // tests/python/mkl/test_subgraph.py::test_pos_conv_add started failing. Switching - // away from primitive with weight mkldnn::format_tag ABcd4b16a4b in order to - // temporarily fix the issue until full fix arrives. Tracking issue: - // /~https://github.com/apache/incubator-mxnet/issues/20826. - (param.mkldnn_param.quantized && conv_pd->weights_desc().dims()[1] < 4 && - conv_pd->weights_desc().data.padded_dims[1] == 16)) { - // next_impl() will visit desc and engine, please make sure they are still alive here. - CHECK(conv_pd->next_impl()) << "No convolution implementation for this request."; - } - return conv_pd; - } catch (mkldnn::error& e) { - if (e.status == mkldnn_unimplemented && param.mkldnn_param.quantized) { - LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is " - "required for int8 convolution"; - } else { - LOG(ERROR) << e.message; - } - throw; - } - }; + auto GetConvFwdPd = [¶m, &data, &weights, &output, &attr]( + const mkldnn::convolution_forward::desc& desc) { + auto engine = CpuEngine::Get()->get_engine(); + try { + // MKLDNN introduced padded formats since 0.15 which require more memory compared to the + // actual size of the tensor. Currently, MKLDNN operators still reuse memory from memory + // planning, so here we need to select a suboptimal kernel for computation that has the + // expected memory size requirements + auto conv_pd = + std::make_shared(desc, attr, engine); + while ( + conv_pd->dst_desc().get_size() != GetArraySize(output) || + conv_pd->src_desc().get_size() != GetArraySize(data) || + (!param.mkldnn_param.quantized && + conv_pd->weights_desc().get_size() != GetArraySize(weights))) { + // next_impl() will visit desc and engine, please make sure they are still alive here. + CHECK(conv_pd->next_impl()) << "No convolution implementation for this request."; + } + return conv_pd; + } catch (mkldnn::error& e) { + if (e.status == mkldnn_unimplemented && param.mkldnn_param.quantized) { + LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is " + "required for int8 convolution"; + } else { + LOG(ERROR) << e.message; + } + throw; + } + }; if (param.conv_param.dilate.ndim() == 0 && bias_md_ptr == nullptr) { mkldnn::convolution_forward::desc desc(prop, mkldnn::algorithm::convolution_direct, data_md,