diff --git a/docs/tutorials/mkldnn/MKLDNN_README.md b/docs/tutorials/mkldnn/MKLDNN_README.md index 2a7cd40ac291..b3c9198c13d8 100644 --- a/docs/tutorials/mkldnn/MKLDNN_README.md +++ b/docs/tutorials/mkldnn/MKLDNN_README.md @@ -1,340 +1,639 @@ - - - - - - - - - - - - - - - - - -# Build/Install MXNet with MKL-DNN - -A better training and inference performance is expected to be achieved on Intel-Architecture CPUs with MXNet built with [Intel MKL-DNN](/~https://github.com/intel/mkl-dnn) on multiple operating system, including Linux, Windows and MacOS. -In the following sections, you will find build instructions for MXNet with Intel MKL-DNN on Linux, MacOS and Windows. - -Please find MKL-DNN optimized operators and other features in the [MKL-DNN operator list](../mkldnn/operator_list.md). - -The detailed performance data collected on Intel Xeon CPU with MXNet built with Intel MKL-DNN can be found [here](https://mxnet.incubator.apache.org/faq/perf.html#intel-cpu). - - -

Contents

- -* [1. Linux](#1) -* [2. MacOS](#2) -* [3. Windows](#3) -* [4. Verify MXNet with python](#4) -* [5. Enable MKL BLAS](#5) -* [6. Enable graph optimization](#6) -* [7. Quantization](#7) -* [8. Support](#8) - -

Linux

- -### Prerequisites - -``` -sudo apt-get update -sudo apt-get install -y build-essential git -sudo apt-get install -y libopenblas-dev liblapack-dev -sudo apt-get install -y libopencv-dev -sudo apt-get install -y graphviz -``` - -### Clone MXNet sources - -``` -git clone --recursive /~https://github.com/apache/incubator-mxnet.git -cd incubator-mxnet -``` - -### Build MXNet with MKL-DNN - -``` -make -j $(nproc) USE_OPENCV=1 USE_MKLDNN=1 USE_BLAS=mkl USE_INTEL_PATH=/opt/intel -``` - -If you don't have the full [MKL](https://software.intel.com/en-us/intel-mkl) library installation, you might use OpenBLAS as the blas library, by setting USE_BLAS=openblas. - -

MacOS

- -### Prerequisites - -Install the dependencies, required for MXNet, with the following commands: - -- [Homebrew](https://brew.sh/) -- llvm (clang in macOS does not support OpenMP) -- OpenCV (for computer vision operations) - -``` -# Paste this command in Mac terminal to install Homebrew -/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" - -# install dependency -brew update -brew install pkg-config -brew install graphviz -brew tap homebrew/core -brew install opencv -brew tap homebrew/versions -brew install llvm -``` - -### Clone MXNet sources - -``` -git clone --recursive /~https://github.com/apache/incubator-mxnet.git -cd incubator-mxnet -``` - -### Build MXNet with MKL-DNN - -``` -LIBRARY_PATH=$(brew --prefix llvm)/lib/ make -j $(sysctl -n hw.ncpu) CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ USE_OPENCV=1 USE_OPENMP=1 USE_MKLDNN=1 USE_BLAS=apple USE_PROFILER=1 -``` - -

Windows

- -On Windows, you can use [Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) and [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/) to compile MXNet with Intel MKL-DNN. -[Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is recommended. - -**Visual Studio 2015** - -To build and install MXNet yourself, you need the following dependencies. Install the required dependencies: - -1. If [Microsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is not already installed, download and install it. You can download and install the free community edition. -2. Download and Install [CMake 3](https://cmake.org/) if it is not already installed. -3. Download and install [OpenCV 3](http://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.0.0/opencv-3.0.0.exe/download). -4. Unzip the OpenCV package. -5. Set the environment variable ```OpenCV_DIR``` to point to the ```OpenCV build directory``` (```C:\opencv\build\x64\vc14``` for example). Also, you need to add the OpenCV bin directory (```C:\opencv\build\x64\vc14\bin``` for example) to the ``PATH`` variable. -6. If you have Intel Math Kernel Library (MKL) installed, set ```MKL_ROOT``` to point to ```MKL``` directory that contains the ```include``` and ```lib```. If you want to use MKL blas, you should set ```-DUSE_BLAS=mkl``` when cmake. Typically, you can find the directory in -```C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2018\windows\mkl```. -7. If you don't have the Intel Math Kernel Library (MKL) installed, download and install [OpenBLAS](http://sourceforge.net/projects/openblas/files/v0.2.14/). Note that you should also download ```mingw64.dll.zip`` along with openBLAS and add them to PATH. -8. Set the environment variable ```OpenBLAS_HOME``` to point to the ```OpenBLAS``` directory that contains the ```include``` and ```lib``` directories. Typically, you can find the directory in ```C:\Program files (x86)\OpenBLAS\```. - -After you have installed all of the required dependencies, build the MXNet source code: - -1. Download the MXNet source code from [GitHub](/~https://github.com/apache/incubator-mxnet). Don't forget to pull the submodules: -``` -git clone --recursive /~https://github.com/apache/incubator-mxnet.git -``` - -2. Copy file `3rdparty/mkldnn/config_template.vcxproj` to incubator-mxnet root. - -3. Start a Visual Studio command prompt. - -4. Use [CMake 3](https://cmake.org/) to create a Visual Studio solution in ```./build``` or some other directory. Make sure to specify the architecture in the -[CMake 3](https://cmake.org/) command: -``` -mkdir build -cd build -cmake -G "Visual Studio 14 Win64" .. -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=open -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release -``` - -5. In Visual Studio, open the solution file,```.sln```, and compile it. -These commands produce a library called ```libmxnet.dll``` in the ```./build/Release/``` or ```./build/Debug``` folder. -Also ```libmkldnn.dll``` with be in the ```./build/3rdparty/mkldnn/src/Release/``` - -6. Make sure that all the dll files used above(such as `libmkldnn.dll`, `libmklml.dll`, `libiomp5.dll`, `libopenblas.dll`, etc) are added to the system PATH. For convinence, you can put all of them to ```\windows\system32```. Or you will come across `Not Found Dependencies` when loading MXNet. - -**Visual Studio 2017** - -To build and install MXNet yourself using [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/), you need the following dependencies. Install the required dependencies: - -1. If [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/) is not already installed, download and install it. You can download and install the free community edition. -2. Download and install [CMake 3](https://cmake.org/files/v3.11/cmake-3.11.0-rc4-win64-x64.msi) if it is not already installed. -3. Download and install [OpenCV](https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe/download). -4. Unzip the OpenCV package. -5. Set the environment variable ```OpenCV_DIR``` to point to the ```OpenCV build directory``` (e.g., ```OpenCV_DIR = C:\utils\opencv\build```). -6. If you don't have the Intel Math Kernel Library (MKL) installed, download and install [OpenBlas](https://sourceforge.net/projects/openblas/files/v0.2.20/OpenBLAS%200.2.20%20version.zip/download). -7. Set the environment variable ```OpenBLAS_HOME``` to point to the ```OpenBLAS``` directory that contains the ```include``` and ```lib``` directories (e.g., ```OpenBLAS_HOME = C:\utils\OpenBLAS```). - -After you have installed all of the required dependencies, build the MXNet source code: - -1. Start ```cmd``` in windows. - -2. Download the MXNet source code from GitHub by using following command: - -```r -cd C:\ -git clone --recursive /~https://github.com/apache/incubator-mxnet.git -``` - -3. Copy file `3rdparty/mkldnn/config_template.vcxproj` to incubator-mxnet root. - -4. Follow [this link](https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio) to modify ```Individual components```, and check ```VC++ 2017 version 15.4 v14.11 toolset```, and click ```Modify```. - -5. Change the version of the Visual studio 2017 to v14.11 using the following command (by default the VS2017 is installed in the following path): - -```r -"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat" -vcvars_ver=14.11 -``` - -6. Create a build dir using the following command and go to the directory, for example: - -```r -mkdir C:\build -cd C:\build -``` - -7. CMake the MXNet source code by using following command: - -```r -cmake -G "Visual Studio 15 2017 Win64" .. -T host=x64 -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=open -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release -``` - -8. After the CMake successfully completed, compile the the MXNet source code by using following command: - -```r -msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount -``` - -9. Make sure that all the dll files used above(such as `libmkldnn.dll`, `libmklml.dll`, `libiomp5.dll`, `libopenblas.dll`, etc) are added to the system PATH. For convinence, you can put all of them to ```\windows\system32```. Or you will come across `Not Found Dependencies` when loading MXNet. - -

Verify MXNet with python

- -``` -cd python -sudo python setup.py install -python -c "import mxnet as mx;print((mx.nd.ones((2, 3))*2).asnumpy());" - -Expected Output: - -[[ 2. 2. 2.] - [ 2. 2. 2.]] -``` - -### Verify whether MKL-DNN works - -After MXNet is installed, you can verify if MKL-DNN backend works well with a single Convolution layer. - -``` -import mxnet as mx -import numpy as np - -num_filter = 32 -kernel = (3, 3) -pad = (1, 1) -shape = (32, 32, 256, 256) - -x = mx.sym.Variable('x') -w = mx.sym.Variable('w') -y = mx.sym.Convolution(data=x, weight=w, num_filter=num_filter, kernel=kernel, no_bias=True, pad=pad) -exe = y.simple_bind(mx.cpu(), x=shape) - -exe.arg_arrays[0][:] = np.random.normal(size=exe.arg_arrays[0].shape) -exe.arg_arrays[1][:] = np.random.normal(size=exe.arg_arrays[1].shape) - -exe.forward(is_train=False) -o = exe.outputs[0] -t = o.asnumpy() -``` - -More detailed debugging and profiling information can be logged by setting the environment variable 'MKLDNN_VERBOSE': -``` -export MKLDNN_VERBOSE=1 -``` -For example, by running above code snippet, the following debugging logs providing more insights on MKL-DNN primitives `convolution` and `reorder`. That includes: Memory layout, infer shape and the time cost of primitive execution. -``` -mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nchw out:f32_nChw16c,num:1,32x32x256x256,6.47681 -mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0429688 -mkldnn_verbose,exec,convolution,jit:avx512_common,forward_inference,fsrc:nChw16c fwei:OIhw16i16o fbia:undef fdst:nChw16c,alg:convolution_direct,mb32_g1ic32oc32_ih256oh256kh3sh1dh0ph1_iw256ow256kw3sw1dw0pw1,9.98193 -mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0510254 -mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw16c out:f32_nchw,num:1,32x32x256x256,20.4819 -``` - -

Enable MKL BLAS

- -With MKL BLAS, the performace is expected to furtherly improved with variable range depending on the computation load of the models. -You can redistribute not only dynamic libraries but also headers, examples and static libraries on accepting the license [Intel Simplified license](https://software.intel.com/en-us/license/intel-simplified-software-license). -Installing the full MKL installation enables MKL support for all operators under the linalg namespace. - - 1. Download and install the latest full MKL version following instructions on the [intel website.](https://software.intel.com/en-us/mkl) - - 2. Run `make -j ${nproc} USE_BLAS=mkl` - - 3. Navigate into the python directory - - 4. Run `sudo python setup.py install` - -### Verify whether MKL works - -After MXNet is installed, you can verify if MKL BLAS works well with a single dot layer. - -``` -import mxnet as mx -import numpy as np - -shape_x = (1, 10, 8) -shape_w = (1, 12, 8) - -x_npy = np.random.normal(0, 1, shape_x) -w_npy = np.random.normal(0, 1, shape_w) - -x = mx.sym.Variable('x') -w = mx.sym.Variable('w') -y = mx.sym.batch_dot(x, w, transpose_b=True) -exe = y.simple_bind(mx.cpu(), x=x_npy.shape, w=w_npy.shape) - -exe.forward(is_train=False) -o = exe.outputs[0] -t = o.asnumpy() -``` - -You can open the `MKL_VERBOSE` flag by setting environment variable: -``` -export MKL_VERBOSE=1 -``` -Then by running above code snippet, you probably will get the following output message which means `SGEMM` primitive from MKL are called. Layout information and primitive execution performance are also demonstrated in the log message. -``` -Numpy + Intel(R) MKL: THREADING LAYER: (null) -Numpy + Intel(R) MKL: setting Intel(R) MKL to use INTEL OpenMP runtime -Numpy + Intel(R) MKL: preloading libiomp5.so runtime -MKL_VERBOSE Intel(R) MKL 2018.0 Update 1 Product build 20171007 for Intel(R) 64 architecture Intel(R) Advanced Vector Extensions 512 (Intel(R) AVX-512) enabled processors, Lnx 2.40GHz lp64 intel_thread NMICDev:0 -MKL_VERBOSE SGEMM(T,N,12,10,8,0x7f7f927b1378,0x1bc2140,8,0x1ba8040,8,0x7f7f927b1380,0x7f7f7400a280,12) 8.93ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:40 WDiv:HOST:+0.000 -``` - -

Enable graph optimization

- -Graph optimization by subgraph feature are available in master branch. You can build from source and then use below command to enable this *experimental* feature for better performance: - -``` -export MXNET_SUBGRAPH_BACKEND=MKLDNN -``` - -When `MKLDNN` backend is enabled, advanced control options are avaliable: - -``` -export MXNET_DISABLE_MKLDNN_CONV_OPT=1 # disable MKLDNN convolution optimization pass -export MXNET_DISABLE_MKLDNN_FC_OPT=1 # disable MKLDNN FullyConnected optimization pass -``` - - -This limitations of this experimental feature are: - -- Use this feature only for inference. When training, be sure to turn the feature off by unsetting the `MXNET_SUBGRAPH_BACKEND` environment variable. - -- This feature will only run on the CPU, even if you're using a GPU-enabled build of MXNet. - -- [MXNet Graph Optimization and Quantization Technical Information and Performance Details](https://cwiki.apache.org/confluence/display/MXNET/MXNet+Graph+Optimization+and+Quantization+based+on+subgraph+and+MKL-DNN). - -

Quantization and Inference with INT8

- -Benefiting from Intel MKL-DNN, MXNet built with Intel MKL-DNN brings outstanding performance improvement on quantization and inference with INT8 Intel CPU Platform on Intel Xeon Scalable Platform. - -- [CNN Quantization Examples](/~https://github.com/apache/incubator-mxnet/tree/master/example/quantization). - -

Next Steps and Support

- -- For questions or support specific to MKL, visit the [Intel MKL](https://software.intel.com/en-us/mkl) website. - -- For questions or support specific to MKL, visit the [Intel MKLDNN](/~https://github.com/intel/mkl-dnn) website. - -- If you find bugs, please open an issue on GitHub for [MXNet with MKL](/~https://github.com/apache/incubator-mxnet/labels/MKL) or [MXNet with MKLDNN](/~https://github.com/apache/incubator-mxnet/labels/MKLDNN). + + + + + + + + + + + + + + + + + +# Build/Install MXNet with MKL-DNN + +A better training and inference performance is expected to be achieved on Intel-Architecture CPUs with MXNet built with [Intel MKL-DNN](/~https://github.com/intel/mkl-dnn) on multiple operating system, including Linux, Windows and MacOS. +In the following sections, you will find build instructions for MXNet with Intel MKL-DNN on Linux, MacOS and Windows. + +Please find MKL-DNN optimized operators and other features in the [MKL-DNN operator list](../mkldnn/operator_list.md). + +The detailed performance data collected on Intel Xeon CPU with MXNet built with Intel MKL-DNN can be found [here](https://mxnet.incubator.apache.org/faq/perf.html#intel-cpu). + + +

Contents

+ +* [1. Linux](#1) +* [2. MacOS](#2) +* [3. Windows](#3) +* [4. Verify MXNet with python](#4) +* [5. Enable MKL BLAS](#5) +* [6. Enable graph optimization](#6) +* [7. Quantization](#7) +* [8. Support](#8) + +

Linux

+ +### Prerequisites + +``` +sudo apt-get update +sudo apt-get install -y build-essential git +sudo apt-get install -y libopenblas-dev liblapack-dev +sudo apt-get install -y libopencv-dev +sudo apt-get install -y graphviz +``` + +### Clone MXNet sources + +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +cd incubator-mxnet +``` + +### Build MXNet with MKL-DNN + +``` +make -j $(nproc) USE_OPENCV=1 USE_MKLDNN=1 USE_BLAS=mkl USE_INTEL_PATH=/opt/intel +``` + +If you don't have the full [MKL](https://software.intel.com/en-us/intel-mkl) library installation, you might use OpenBLAS as the blas library, by setting USE_BLAS=openblas. + +

MacOS

+ +### Prerequisites + +Install the dependencies, required for MXNet, with the following commands: + +- [Homebrew](https://brew.sh/) +- llvm (clang in macOS does not support OpenMP) +- OpenCV (for computer vision operations) + +``` +# Paste this command in Mac terminal to install Homebrew +/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" + +# install dependency +brew update +brew install pkg-config +brew install graphviz +brew tap homebrew/core +brew install opencv +brew tap homebrew/versions +brew install llvm +``` + +### Clone MXNet sources + +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +cd incubator-mxnet +``` + +### Build MXNet with MKL-DNN + +``` +LIBRARY_PATH=$(brew --prefix llvm)/lib/ make -j $(sysctl -n hw.ncpu) CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ USE_OPENCV=1 USE_OPENMP=1 USE_MKLDNN=1 USE_BLAS=apple USE_PROFILER=1 +``` + +

Windows

+ +On Windows, you can use [Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) and [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/) to compile MXNet with Intel MKL-DNN. +[Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is recommended. + +**Visual Studio 2015** + +To build and install MXNet yourself, you need the following dependencies. Install the required dependencies: + +1. If [Microsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is not already installed, download and install it. You can download and install the free community edition. +2. Download and Install [CMake 3](https://cmake.org/files/v3.14/cmake-3.14.0-win64-x64.msi) if it is not already installed. +3. Download [OpenCV 3](https://sourceforge.net/projects/opencvlibrary/files/3.4.5/opencv-3.4.5-vc14_vc15.exe/download), and unzip the OpenCV package, set the environment variable ```OpenCV_DIR``` to point to the ```OpenCV build directory``` (e.g.,```OpenCV_DIR = C:\opencv\build ```). Also, add the OpenCV bin directory (```C:\opencv\build\x64\vc14\bin``` for example) to the ``PATH`` variable. +4. If you have Intel Math Kernel Library (Intel MKL) installed, set ```MKL_ROOT``` to point to ```MKL``` directory that contains the ```include``` and ```lib```. If you want to use MKL blas, you should set ```-DUSE_BLAS=mkl``` when cmake. Typically, you can find the directory in ```C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl```. +5. If you don't have the Intel Math Kernel Library (MKL) installed, download and install [OpenBLAS](http://sourceforge.net/projects/openblas/files/v0.2.14/), or build the latest version of OpenBLAS from source. Note that you should also download ```mingw64.dll.zip``` along with openBLAS and add them to PATH. +6. Set the environment variable ```OpenBLAS_HOME``` to point to the ```OpenBLAS``` directory that contains the ```include``` and ```lib``` directories. Typically, you can find the directory in ```C:\Downloads\OpenBLAS\```. + +After you have installed all of the required dependencies, build the MXNet source code: + +1. Start a Visual Studio command prompt by click windows Start menu>>Visual Studio 2015>>VS2015 X64 Native Tools Command Prompt, and download the MXNet source code from [GitHub](/~https://github.com/apache/incubator-mxnet) by the command: +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +cd C:\incubator-mxent +``` +2. Enable Intel MKL-DNN by -DUSE_MKLDNN=1. Use [CMake 3](https://cmake.org/) to create a Visual Studio solution in ```./build```. Make sure to specify the architecture in the +command: +``` +>mkdir build +>cd build +>cmake -G "Visual Studio 14 Win64" .. -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=open -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release +``` +3. Enable Intel MKL-DNN and Intel MKL as BLAS library by the command: +``` +>"C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl\bin\mklvars.bat" intel64 +>cmake -G "Visual Studio 14 Win64" .. -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=mkl -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release -DMKL_ROOT="C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl" +``` +4. After the CMake successfully completed, in Visual Studio, open the solution file ```.sln``` and compile it, or compile the the MXNet source code by using following command: +```r +msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount +``` + These commands produce mxnet library called ```libmxnet.dll``` in the ```./build/Release/``` or ```./build/Debug``` folder. Also ```libmkldnn.dll``` with be in the ```./build/3rdparty/mkldnn/src/Release/``` + +5. Make sure that all the dll files used above(such as `libmkldnn.dll`, `libmklml*.dll`, `libiomp5.dll`, `libopenblas*.dll`, etc) are added to the system PATH. For convinence, you can put all of them to ```\windows\system32```. Or you will come across `Not Found Dependencies` when loading MXNet. + +**Visual Studio 2017** + +User can follow the same steps of Visual Studio 2015 to build MXNET with MKL-DNN, but change the version related command, for example,```C:\opencv\build\x64\vc15\bin``` and build command is as below: + +``` +>cmake -G "Visual Studio 15 Win64" .. -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=mkl -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release -DMKL_ROOT="C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl" + +``` + +

Verify MXNet with python

+ +Preinstall python and some dependent modules: +``` +pip install numpy graphviz +set PYTHONPATH=[workdir]\incubator-mxnet\python +``` +or install mxnet +``` +cd python +sudo python setup.py install +python -c "import mxnet as mx;print((mx.nd.ones((2, 3))*2).asnumpy());" +``` +Expected Output: +``` +[[ 2. 2. 2.] + [ 2. 2. 2.]] +``` +### Verify whether MKL-DNN works + +After MXNet is installed, you can verify if MKL-DNN backend works well with a single Convolution layer. +``` +import mxnet as mx +import numpy as np + +num_filter = 32 +kernel = (3, 3) +pad = (1, 1) +shape = (32, 32, 256, 256) + +x = mx.sym.Variable('x') +w = mx.sym.Variable('w') +y = mx.sym.Convolution(data=x, weight=w, num_filter=num_filter, kernel=kernel, no_bias=True, pad=pad) +exe = y.simple_bind(mx.cpu(), x=shape) + +exe.arg_arrays[0][:] = np.random.normal(size=exe.arg_arrays[0].shape) +exe.arg_arrays[1][:] = np.random.normal(size=exe.arg_arrays[1].shape) + +exe.forward(is_train=False) +o = exe.outputs[0] +t = o.asnumpy() +``` + +More detailed debugging and profiling information can be logged by setting the environment variable 'MKLDNN_VERBOSE': +``` +export MKLDNN_VERBOSE=1 +``` +For example, by running above code snippet, the following debugging logs providing more insights on MKL-DNN primitives `convolution` and `reorder`. That includes: Memory layout, infer shape and the time cost of primitive execution. +``` +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nchw out:f32_nChw16c,num:1,32x32x256x256,6.47681 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0429688 +mkldnn_verbose,exec,convolution,jit:avx512_common,forward_inference,fsrc:nChw16c fwei:OIhw16i16o fbia:undef fdst:nChw16c,alg:convolution_direct,mb32_g1ic32oc32_ih256oh256kh3sh1dh0ph1_iw256ow256kw3sw1dw0pw1,9.98193 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0510254 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw16c out:f32_nchw,num:1,32x32x256x256,20.4819 +``` + +

Enable MKL BLAS

+ +With MKL BLAS, the performace is expected to furtherly improved with variable range depending on the computation load of the models. +You can redistribute not only dynamic libraries but also headers, examples and static libraries on accepting the license [Intel Simplified license](https://software.intel.com/en-us/license/intel-simplified-software-license). +Installing the full MKL installation enables MKL support for all operators under the linalg namespace. + + 1. Download and install the latest full MKL version following instructions on the [intel website.](https://software.intel.com/en-us/mkl) + + 2. Run `make -j ${nproc} USE_BLAS=mkl` + + 3. Navigate into the python directory + + 4. Run `sudo python setup.py install` + +### Verify whether MKL works + +After MXNet is installed, you can verify if MKL BLAS works well with a single dot layer. + +``` +import mxnet as mx +import numpy as np + +shape_x = (1, 10, 8) +shape_w = (1, 12, 8) + +x_npy = np.random.normal(0, 1, shape_x) +w_npy = np.random.normal(0, 1, shape_w) + +x = mx.sym.Variable('x') +w = mx.sym.Variable('w') +y = mx.sym.batch_dot(x, w, transpose_b=True) +exe = y.simple_bind(mx.cpu(), x=x_npy.shape, w=w_npy.shape) + +exe.forward(is_train=False) +o = exe.outputs[0] +t = o.asnumpy() +``` + +You can open the `MKL_VERBOSE` flag by setting environment variable: +``` +export MKL_VERBOSE=1 +``` +Then by running above code snippet, you probably will get the following output message which means `SGEMM` primitive from MKL are called. Layout information and primitive execution performance are also demonstrated in the log message. +``` +Numpy + Intel(R) MKL: THREADING LAYER: (null) +Numpy + Intel(R) MKL: setting Intel(R) MKL to use INTEL OpenMP runtime +Numpy + Intel(R) MKL: preloading libiomp5.so runtime +MKL_VERBOSE Intel(R) MKL 2019.0 Update 3 Product build 20190125 for Intel(R) 64 architecture Intel(R) Advanced Vector Extensions 512 (Intel(R) AVX-512) enabled processors, Lnx 2.40GHz lp64 intel_thread NMICDev:0 +MKL_VERBOSE SGEMM(T,N,12,10,8,0x7f7f927b1378,0x1bc2140,8,0x1ba8040,8,0x7f7f927b1380,0x7f7f7400a280,12) 8.93ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:40 WDiv:HOST:+0.000 +``` + +

Enable graph optimization

+ +Graph optimization by subgraph feature are available in master branch. You can build from source and then use below command to enable this *experimental* feature for better performance: + +``` +export MXNET_SUBGRAPH_BACKEND=MKLDNN +``` + +When `MKLDNN` backend is enabled, advanced control options are avaliable: + +``` +export MXNET_DISABLE_MKLDNN_CONV_OPT=1 # disable MKLDNN convolution optimization pass +export MXNET_DISABLE_MKLDNN_FC_OPT=1 # disable MKLDNN FullyConnected optimization pass +``` + + +This limitations of this experimental feature are: + +- Use this feature only for inference. When training, be sure to turn the feature off by unsetting the `MXNET_SUBGRAPH_BACKEND` environment variable. + +- This feature will only run on the CPU, even if you're using a GPU-enabled build of MXNet. + +- [MXNet Graph Optimization and Quantization Technical Information and Performance Details](https://cwiki.apache.org/confluence/display/MXNET/MXNet+Graph+Optimization+and+Quantization+based+on+subgraph+and+MKL-DNN). + +

Quantization and Inference with INT8

+ +Benefiting from Intel MKL-DNN, MXNet built with Intel MKL-DNN brings outstanding performance improvement on quantization and inference with INT8 Intel CPU Platform on Intel Xeon Scalable Platform. + +- [CNN Quantization Examples](/~https://github.com/apache/incubator-mxnet/tree/master/example/quantization). + +

Next Steps and Support

+ +- For questions or support specific to MKL, visit the [Intel MKL](https://software.intel.com/en-us/mkl) website. + +- For questions or support specific to MKL, visit the [Intel MKLDNN](/~https://github.com/intel/mkl-dnn) website. + +- If you find bugs, please open an issue on GitHub for [MXNet with MKL](/~https://github.com/apache/incubator-mxnet/labels/MKL) or [MXNet with MKLDNN](/~https://github.com/apache/incubator-mxnet/labels/MKLDNN). +======= + + + + + + + + + + + + + + + + + +# Build/Install MXNet with MKL-DNN + +A better training and inference performance is expected to be achieved on Intel-Architecture CPUs with MXNet built with [Intel MKL-DNN](/~https://github.com/intel/mkl-dnn) on multiple operating system, including Linux, Windows and MacOS. +In the following sections, you will find build instructions for MXNet with Intel MKL-DNN on Linux, MacOS and Windows. + +Please find MKL-DNN optimized operators and other features in the [MKL-DNN operator list](../mkldnn/operator_list.md). + +The detailed performance data collected on Intel Xeon CPU with MXNet built with Intel MKL-DNN can be found [here](https://mxnet.incubator.apache.org/faq/perf.html#intel-cpu). + + +

Contents

+ +* [1. Linux](#1) +* [2. MacOS](#2) +* [3. Windows](#3) +* [4. Verify MXNet with python](#4) +* [5. Enable MKL BLAS](#5) +* [6. Enable graph optimization](#6) +* [7. Quantization](#7) +* [8. Support](#8) + +

Linux

+ +### Prerequisites + +``` +sudo apt-get update +sudo apt-get install -y build-essential git +sudo apt-get install -y libopenblas-dev liblapack-dev +sudo apt-get install -y libopencv-dev +sudo apt-get install -y graphviz +``` + +### Clone MXNet sources + +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +cd incubator-mxnet +``` + +### Build MXNet with MKL-DNN + +``` +make -j $(nproc) USE_OPENCV=1 USE_MKLDNN=1 USE_BLAS=mkl USE_INTEL_PATH=/opt/intel +``` + +If you don't have the full [MKL](https://software.intel.com/en-us/intel-mkl) library installation, you might use OpenBLAS as the blas library, by setting USE_BLAS=openblas. + +

MacOS

+ +### Prerequisites + +Install the dependencies, required for MXNet, with the following commands: + +- [Homebrew](https://brew.sh/) +- llvm (clang in macOS does not support OpenMP) +- OpenCV (for computer vision operations) + +``` +# Paste this command in Mac terminal to install Homebrew +/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" + +# install dependency +brew update +brew install pkg-config +brew install graphviz +brew tap homebrew/core +brew install opencv +brew tap homebrew/versions +brew install llvm +``` + +### Clone MXNet sources + +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +cd incubator-mxnet +``` + +### Build MXNet with MKL-DNN + +``` +LIBRARY_PATH=$(brew --prefix llvm)/lib/ make -j $(sysctl -n hw.ncpu) CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ USE_OPENCV=1 USE_OPENMP=1 USE_MKLDNN=1 USE_BLAS=apple USE_PROFILER=1 +``` + +

Windows

+ +On Windows, you can use [Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) and [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/) to compile MXNet with Intel MKL-DNN. +[Micrsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is recommended. + +**Visual Studio 2015** + +To build and install MXNet yourself, you need the following dependencies. Install the required dependencies: + +1. If [Microsoft Visual Studio 2015](https://www.visualstudio.com/vs/older-downloads/) is not already installed, download and install it. You can download and install the free community edition. +2. Download and Install [CMake 3](https://cmake.org/) if it is not already installed. +3. Download and install [OpenCV 3](http://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.0.0/opencv-3.0.0.exe/download). +4. Unzip the OpenCV package. +5. Set the environment variable ```OpenCV_DIR``` to point to the ```OpenCV build directory``` (```C:\opencv\build\x64\vc14``` for example). Also, you need to add the OpenCV bin directory (```C:\opencv\build\x64\vc14\bin``` for example) to the ``PATH`` variable. +6. If you have Intel Math Kernel Library (MKL) installed, set ```MKL_ROOT``` to point to ```MKL``` directory that contains the ```include``` and ```lib```. If you want to use MKL blas, you should set ```-DUSE_BLAS=mkl``` when cmake. Typically, you can find the directory in +```C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2018\windows\mkl```. +7. If you don't have the Intel Math Kernel Library (MKL) installed, download and install [OpenBLAS](http://sourceforge.net/projects/openblas/files/v0.2.14/). Note that you should also download ```mingw64.dll.zip`` along with openBLAS and add them to PATH. +8. Set the environment variable ```OpenBLAS_HOME``` to point to the ```OpenBLAS``` directory that contains the ```include``` and ```lib``` directories. Typically, you can find the directory in ```C:\Program files (x86)\OpenBLAS\```. + +After you have installed all of the required dependencies, build the MXNet source code: + +1. Download the MXNet source code from [GitHub](/~https://github.com/apache/incubator-mxnet). Don't forget to pull the submodules: +``` +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +``` + +2. Copy file `3rdparty/mkldnn/config_template.vcxproj` to incubator-mxnet root. + +3. Start a Visual Studio command prompt. + +4. Use [CMake 3](https://cmake.org/) to create a Visual Studio solution in ```./build``` or some other directory. Make sure to specify the architecture in the +[CMake 3](https://cmake.org/) command: +``` +mkdir build +cd build +cmake -G "Visual Studio 14 Win64" .. -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=open -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release +``` + +5. In Visual Studio, open the solution file,```.sln```, and compile it. +These commands produce a library called ```libmxnet.dll``` in the ```./build/Release/``` or ```./build/Debug``` folder. +Also ```libmkldnn.dll``` with be in the ```./build/3rdparty/mkldnn/src/Release/``` + +6. Make sure that all the dll files used above(such as `libmkldnn.dll`, `libmklml.dll`, `libiomp5.dll`, `libopenblas.dll`, etc) are added to the system PATH. For convinence, you can put all of them to ```\windows\system32```. Or you will come across `Not Found Dependencies` when loading MXNet. + +**Visual Studio 2017** + +To build and install MXNet yourself using [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/), you need the following dependencies. Install the required dependencies: + +1. If [Microsoft Visual Studio 2017](https://www.visualstudio.com/downloads/) is not already installed, download and install it. You can download and install the free community edition. +2. Download and install [CMake 3](https://cmake.org/files/v3.11/cmake-3.11.0-rc4-win64-x64.msi) if it is not already installed. +3. Download and install [OpenCV](https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe/download). +4. Unzip the OpenCV package. +5. Set the environment variable ```OpenCV_DIR``` to point to the ```OpenCV build directory``` (e.g., ```OpenCV_DIR = C:\utils\opencv\build```). +6. If you don't have the Intel Math Kernel Library (MKL) installed, download and install [OpenBlas](https://sourceforge.net/projects/openblas/files/v0.2.20/OpenBLAS%200.2.20%20version.zip/download). +7. Set the environment variable ```OpenBLAS_HOME``` to point to the ```OpenBLAS``` directory that contains the ```include``` and ```lib``` directories (e.g., ```OpenBLAS_HOME = C:\utils\OpenBLAS```). + +After you have installed all of the required dependencies, build the MXNet source code: + +1. Start ```cmd``` in windows. + +2. Download the MXNet source code from GitHub by using following command: + +```r +cd C:\ +git clone --recursive /~https://github.com/apache/incubator-mxnet.git +``` + +3. Copy file `3rdparty/mkldnn/config_template.vcxproj` to incubator-mxnet root. + +4. Follow [this link](https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio) to modify ```Individual components```, and check ```VC++ 2017 version 15.4 v14.11 toolset```, and click ```Modify```. + +5. Change the version of the Visual studio 2017 to v14.11 using the following command (by default the VS2017 is installed in the following path): + +```r +"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat" -vcvars_ver=14.11 +``` + +6. Create a build dir using the following command and go to the directory, for example: + +```r +mkdir C:\build +cd C:\build +``` + +7. CMake the MXNet source code by using following command: + +```r +cmake -G "Visual Studio 15 2017 Win64" .. -T host=x64 -DUSE_CUDA=0 -DUSE_CUDNN=0 -DUSE_NVRTC=0 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_PROFILER=1 -DUSE_BLAS=open -DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_NAME=All -DUSE_MKLDNN=1 -DCMAKE_BUILD_TYPE=Release +``` + +8. After the CMake successfully completed, compile the the MXNet source code by using following command: + +```r +msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount +``` + +9. Make sure that all the dll files used above(such as `libmkldnn.dll`, `libmklml.dll`, `libiomp5.dll`, `libopenblas.dll`, etc) are added to the system PATH. For convinence, you can put all of them to ```\windows\system32```. Or you will come across `Not Found Dependencies` when loading MXNet. + +

Verify MXNet with python

+ +``` +cd python +sudo python setup.py install +python -c "import mxnet as mx;print((mx.nd.ones((2, 3))*2).asnumpy());" + +Expected Output: + +[[ 2. 2. 2.] + [ 2. 2. 2.]] +``` + +### Verify whether MKL-DNN works + +After MXNet is installed, you can verify if MKL-DNN backend works well with a single Convolution layer. + +``` +import mxnet as mx +import numpy as np + +num_filter = 32 +kernel = (3, 3) +pad = (1, 1) +shape = (32, 32, 256, 256) + +x = mx.sym.Variable('x') +w = mx.sym.Variable('w') +y = mx.sym.Convolution(data=x, weight=w, num_filter=num_filter, kernel=kernel, no_bias=True, pad=pad) +exe = y.simple_bind(mx.cpu(), x=shape) + +exe.arg_arrays[0][:] = np.random.normal(size=exe.arg_arrays[0].shape) +exe.arg_arrays[1][:] = np.random.normal(size=exe.arg_arrays[1].shape) + +exe.forward(is_train=False) +o = exe.outputs[0] +t = o.asnumpy() +``` + +More detailed debugging and profiling information can be logged by setting the environment variable 'MKLDNN_VERBOSE': +``` +export MKLDNN_VERBOSE=1 +``` +For example, by running above code snippet, the following debugging logs providing more insights on MKL-DNN primitives `convolution` and `reorder`. That includes: Memory layout, infer shape and the time cost of primitive execution. +``` +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nchw out:f32_nChw16c,num:1,32x32x256x256,6.47681 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0429688 +mkldnn_verbose,exec,convolution,jit:avx512_common,forward_inference,fsrc:nChw16c fwei:OIhw16i16o fbia:undef fdst:nChw16c,alg:convolution_direct,mb32_g1ic32oc32_ih256oh256kh3sh1dh0ph1_iw256ow256kw3sw1dw0pw1,9.98193 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw16i16o,num:1,32x32x3x3,0.0510254 +mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw16c out:f32_nchw,num:1,32x32x256x256,20.4819 +``` + +

Enable MKL BLAS

+ +With MKL BLAS, the performace is expected to furtherly improved with variable range depending on the computation load of the models. +You can redistribute not only dynamic libraries but also headers, examples and static libraries on accepting the license [Intel Simplified license](https://software.intel.com/en-us/license/intel-simplified-software-license). +Installing the full MKL installation enables MKL support for all operators under the linalg namespace. + + 1. Download and install the latest full MKL version following instructions on the [intel website.](https://software.intel.com/en-us/mkl) + + 2. Run `make -j ${nproc} USE_BLAS=mkl` + + 3. Navigate into the python directory + + 4. Run `sudo python setup.py install` + +### Verify whether MKL works + +After MXNet is installed, you can verify if MKL BLAS works well with a single dot layer. + +``` +import mxnet as mx +import numpy as np + +shape_x = (1, 10, 8) +shape_w = (1, 12, 8) + +x_npy = np.random.normal(0, 1, shape_x) +w_npy = np.random.normal(0, 1, shape_w) + +x = mx.sym.Variable('x') +w = mx.sym.Variable('w') +y = mx.sym.batch_dot(x, w, transpose_b=True) +exe = y.simple_bind(mx.cpu(), x=x_npy.shape, w=w_npy.shape) + +exe.forward(is_train=False) +o = exe.outputs[0] +t = o.asnumpy() +``` + +You can open the `MKL_VERBOSE` flag by setting environment variable: +``` +export MKL_VERBOSE=1 +``` +Then by running above code snippet, you probably will get the following output message which means `SGEMM` primitive from MKL are called. Layout information and primitive execution performance are also demonstrated in the log message. +``` +Numpy + Intel(R) MKL: THREADING LAYER: (null) +Numpy + Intel(R) MKL: setting Intel(R) MKL to use INTEL OpenMP runtime +Numpy + Intel(R) MKL: preloading libiomp5.so runtime +MKL_VERBOSE Intel(R) MKL 2018.0 Update 1 Product build 20171007 for Intel(R) 64 architecture Intel(R) Advanced Vector Extensions 512 (Intel(R) AVX-512) enabled processors, Lnx 2.40GHz lp64 intel_thread NMICDev:0 +MKL_VERBOSE SGEMM(T,N,12,10,8,0x7f7f927b1378,0x1bc2140,8,0x1ba8040,8,0x7f7f927b1380,0x7f7f7400a280,12) 8.93ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:40 WDiv:HOST:+0.000 +``` + +

Enable graph optimization

+ +Graph optimization by subgraph feature are available in master branch. You can build from source and then use below command to enable this *experimental* feature for better performance: + +``` +export MXNET_SUBGRAPH_BACKEND=MKLDNN +``` + +When `MKLDNN` backend is enabled, advanced control options are avaliable: + +``` +export MXNET_DISABLE_MKLDNN_CONV_OPT=1 # disable MKLDNN convolution optimization pass +export MXNET_DISABLE_MKLDNN_FC_OPT=1 # disable MKLDNN FullyConnected optimization pass +``` + + +This limitations of this experimental feature are: + +- Use this feature only for inference. When training, be sure to turn the feature off by unsetting the `MXNET_SUBGRAPH_BACKEND` environment variable. + +- This feature will only run on the CPU, even if you're using a GPU-enabled build of MXNet. + +- [MXNet Graph Optimization and Quantization Technical Information and Performance Details](https://medium.com/apache-mxnet/model-quantization-for-production-level-neural-network-inference-f54462ebba05). + +

Quantization and Inference with INT8

+ +Benefiting from Intel MKL-DNN, MXNet built with Intel MKL-DNN brings outstanding performance improvement on quantization and inference with INT8 Intel CPU Platform on Intel Xeon Scalable Platform. + +- [CNN Quantization Examples](/~https://github.com/apache/incubator-mxnet/tree/master/example/quantization). + +

Next Steps and Support

+ +- For questions or support specific to MKL, visit the [Intel MKL](https://software.intel.com/en-us/mkl) website. + +- For questions or support specific to MKL, visit the [Intel MKLDNN](/~https://github.com/intel/mkl-dnn) website. + +- If you find bugs, please open an issue on GitHub for [MXNet with MKL](/~https://github.com/apache/incubator-mxnet/labels/MKL) or [MXNet with MKLDNN](/~https://github.com/apache/incubator-mxnet/labels/MKLDNN). \ No newline at end of file