From c4d8dee3d4c7b753bb98dc893d0e1cba56575f2c Mon Sep 17 00:00:00 2001 From: Anirudh Acharya Date: Sat, 24 Nov 2018 14:38:24 -0800 Subject: [PATCH] add NAG optimizer to r api --- R-package/R/optimizer.R | 105 ++++++++++++++++++++++ R-package/tests/testthat/test_optimizer.R | 88 +++++++++++++++--- 2 files changed, 182 insertions(+), 11 deletions(-) diff --git a/R-package/R/optimizer.R b/R-package/R/optimizer.R index 9a858d5a6c56..6f13f7b26ddb 100644 --- a/R-package/R/optimizer.R +++ b/R-package/R/optimizer.R @@ -453,6 +453,110 @@ mx.opt.adadelta <- function(rho = 0.90, } +#' Create a Nesterov Accelerated SGD( NAG) optimizer. +#' +#' NAG optimizer is described in Aleksandar Botev. et al (2016). +#' *NAG: A Nesterov accelerated SGD.* +#' https://arxiv.org/pdf/1607.01981.pdf +#' +#' @param learning.rate float, default=0.01 +#' The initial learning rate. +#' @param momentum float, default=0 +#' The momentum value +#' @param wd float, default=0.0 +#' L2 regularization coefficient added to all the weights. +#' @param rescale.grad float, default=1.0 +#' rescaling factor of gradient. +#' @param clip_gradient float, optional, default=-1 (no clipping if < 0) +#' clip gradient in range [-clip_gradient, clip_gradient]. +#' @param lr_scheduler function, optional +#' The learning rate scheduler. +#' +mx.opt.nag <- function(learning.rate = 0.01, + momentum = 0, + wd = 0, + rescale.grad = 1, + clip_gradient = -1, + lr_scheduler = NULL) { + + lr <- learning.rate + count <- 0 + num_update <- 0 + + nag <- new.env() + nag$lr <- learning.rate + nag$count <- 0 + nag$num_update <- 0 + + create_exec <- function(index, weight_dim, ctx) { + + weight <- mx.symbol.Variable("weight") + grad <- mx.symbol.Variable("grad") + mom <- mx.symbol.Variable("mom") + grad <- grad * rescale.grad + + if (!is.null(clip_gradient)) { + if (clip_gradient >= 0) { + grad <- mx.symbol.clip(data = grad, a.min = -clip_gradient, a.max = clip_gradient) + } + } + + if (momentum == 0) { + + weight <- weight - lr * (grad + (wd * weight)) + w <- mx.symbol.identity(weight, name = "w") + sym <- mx.symbol.Group(c(w)) + + } else { + + mom <- momentum * mom + grad + wd * weight + grad <- momentum * mom + grad + weight <- weight - lr * grad + + w <- mx.symbol.identity(weight, name = "w") + m <- mx.symbol.identity(mom, name = "m") + sym <- mx.symbol.Group(c(w, m)) + + } + + exec <- mx.simple.bind(symbol = sym, weight = weight_dim, ctx = ctx, grad.req = "null") + return(exec) + } + + update <- function(index, exec_w, weight, grad) { + + if (!is.null(lr_scheduler)){ + lr_scheduler(nag) ## changing lr + lr <- nag$lr + ## update count + indexKey <- paste0('ik', index) + if (!exists(envir = nag, x = indexKey, inherits = FALSE)){ + nag[[indexKey]] <- 0 + } else { + indexValue <- nag[[indexKey]] + nag[[indexKey]] <- indexValue + 1 + nag$num_update <- max(nag$num_update, nag[[indexKey]]) + } + } + + mx.exec.update.arg.arrays(exec_w, + arg.arrays = list(weight = weight,grad = grad), + match.name = T) + mx.exec.forward(exec_w, is.train = F) + + # update state + if (!is.null(exec_w$ref.outputs$m_output)){ + mx.exec.update.arg.arrays(exec_w, + arg.arrays = list(mom = exec_w$ref.outputs$m_output), + match.name = T) + } + + return(exec_w$ref.outputs$w_output) + } + return(list(create_exec = create_exec, update = update)) +} + + #' Create an optimizer by name and parameters #' #' @param name The name of the optimizer @@ -466,6 +570,7 @@ mx.opt.create <- function(name, ...) { "adam" = mx.opt.adam(...), "adagrad" = mx.opt.adagrad(...), "adadelta" = mx.opt.adadelta(...), + "nag" = mx.opt.nag(...), stop("Unknown optimizer ", name)) } diff --git a/R-package/tests/testthat/test_optimizer.R b/R-package/tests/testthat/test_optimizer.R index 1ae7bc23bdcc..1eec83f2d46e 100644 --- a/R-package/tests/testthat/test_optimizer.R +++ b/R-package/tests/testthat/test_optimizer.R @@ -17,6 +17,12 @@ context("optimizer") +if (Sys.getenv("R_GPU_ENABLE") != "" & as.integer(Sys.getenv("R_GPU_ENABLE")) == + 1) { + mx.ctx.default(new = mx.gpu()) + message("Using GPU for testing.") +} + test_that("sgd", { data <- mx.symbol.Variable("data") @@ -30,14 +36,14 @@ test_that("sgd", { y <- mx.nd.array(c(5, 11, 16)) w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) - exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.cpu(), arg.arrays = list(data = x, + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) optimizer <- mx.opt.create("sgd", learning.rate = 1, momentum = 0, wd = 0, rescale.grad = 1, clip_gradient = -1) - updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.cpu()) + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) mx.exec.forward(exec, is.train = T) mx.exec.backward(exec) @@ -63,14 +69,14 @@ test_that("rmsprop", { y <- mx.nd.array(c(5, 11, 16)) w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) - exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.cpu(), arg.arrays = list(data = x, + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) optimizer <- mx.opt.create("rmsprop", learning.rate = 1, centered = TRUE, gamma1 = 0.95, gamma2 = 0.9, epsilon = 1e-04, wd = 0, rescale.grad = 1, clip_gradient = -1) - updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.cpu()) + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) mx.exec.forward(exec, is.train = T) mx.exec.backward(exec) @@ -97,14 +103,14 @@ test_that("adam", { y <- mx.nd.array(c(5, 11, 16)) w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) - exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.cpu(), arg.arrays = list(data = x, + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) optimizer <- mx.opt.create("adam", learning.rate = 1, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-08, wd = 0, rescale.grad = 1, clip_gradient = -1) - updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.cpu()) + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) mx.exec.forward(exec, is.train = T) mx.exec.backward(exec) @@ -131,14 +137,14 @@ test_that("adagrad", { y <- mx.nd.array(c(5, 11, 16)) w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) - exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.cpu(), arg.arrays = list(data = x, + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) optimizer <- mx.opt.create("adagrad", learning.rate = 1, epsilon = 1e-08, wd = 0, rescale.grad = 1, clip_gradient = -1) - updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.cpu()) + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) mx.exec.forward(exec, is.train = T) mx.exec.backward(exec) @@ -164,22 +170,82 @@ test_that("adadelta", { y <- mx.nd.array(c(5, 11, 16)) w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) - exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.cpu(), arg.arrays = list(data = x, + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) optimizer <- mx.opt.create("adadelta", rho = 0.9, epsilon = 1e-05, wd = 0, rescale.grad = 1, clip_gradient = -1) - updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.cpu()) + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) mx.exec.forward(exec, is.train = T) mx.exec.backward(exec) arg.blocks <- updaters(exec$ref.arg.arrays, exec$ref.grad.arrays) mx.exec.update.arg.arrays(exec, arg.blocks, skip.null = TRUE) - + expect_equal(as.array(arg.blocks[[2]]), array(c(1.11, 1.81), dim = c(2, 1)), tolerance = 0.1) }) + + +test_that("nag_no_momentum", { + data <- mx.symbol.Variable("data") + label <- mx.symbol.Variable("label") + fc_weight <- mx.symbol.Variable("fc_weight") + fc <- mx.symbol.FullyConnected(data = data, weight = fc_weight, no.bias = T, + name = "fc1", num_hidden = 1) + loss <- mx.symbol.LinearRegressionOutput(data = fc, label = label, name = "loss") + + x <- mx.nd.array(array(1:6, dim = 2:3)) + y <- mx.nd.array(c(5, 11, 16)) + w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) + + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, + fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) + + optimizer <- mx.opt.create("nag", learning.rate = 1, momentum = 0, wd = 0, rescale.grad = 1, + clip_gradient = -1) + + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) + + mx.exec.forward(exec, is.train = T) + mx.exec.backward(exec) + + arg.blocks <- updaters(exec$ref.arg.arrays, exec$ref.grad.arrays) + mx.exec.update.arg.arrays(exec, arg.blocks, skip.null = TRUE) + + expect_equal(as.array(arg.blocks[[2]]), array(c(1.4, 2.6), dim = c(2, 1)), tolerance = 0.05) +}) + + +test_that("nag_momentum", { + data <- mx.symbol.Variable("data") + label <- mx.symbol.Variable("label") + fc_weight <- mx.symbol.Variable("fc_weight") + fc <- mx.symbol.FullyConnected(data = data, weight = fc_weight, no.bias = T, + name = "fc1", num_hidden = 1) + loss <- mx.symbol.LinearRegressionOutput(data = fc, label = label, name = "loss") + + x <- mx.nd.array(array(1:6, dim = 2:3)) + y <- mx.nd.array(c(5, 11, 16)) + w1 <- mx.nd.array(array(c(1.1, 1.8), dim = c(2, 1))) + + exec <- mxnet:::mx.symbol.bind(symbol = loss, ctx = mx.ctx.default(), arg.arrays = list(data = x, + fc1_weight = w1, label = y), aux.arrays = NULL, grad.reqs = c("null", "write", "null")) + + optimizer <- mx.opt.create("nag", learning.rate = 1, momentum = 0.1, wd = 0, rescale.grad = 1, + clip_gradient = 5) + + updaters <- mx.opt.get.updater(optimizer, exec$ref.arg.arrays, ctx = mx.ctx.default()) + + mx.exec.forward(exec, is.train = T) + mx.exec.backward(exec) + + arg.blocks <- updaters(exec$ref.arg.arrays, exec$ref.grad.arrays) + mx.exec.update.arg.arrays(exec, arg.blocks, skip.null = TRUE) + + expect_equal(as.array(arg.blocks[[2]]), array(c(1.45, 2.65), dim = c(2, 1)), tolerance = 0.1) +})