diff --git a/CONTRIBUTORS.md b/CONTRIBUTORS.md index d1dd9b90708a..b9f84d592a70 100644 --- a/CONTRIBUTORS.md +++ b/CONTRIBUTORS.md @@ -192,6 +192,7 @@ List of Contributors * [Rahul Padmanabhan](/~https://github.com/rahul3) * [Yuxi Hu](/~https://github.com/yuxihu) * [Harsh Patel](/~https://github.com/harshp8l) +* [Xiao Wang](/~https://github.com/BeyonderXX) Label Bot --------- diff --git a/python/mxnet/gluon/rnn/rnn_cell.py b/python/mxnet/gluon/rnn/rnn_cell.py index 98e96fc6da17..6ef3604eb973 100644 --- a/python/mxnet/gluon/rnn/rnn_cell.py +++ b/python/mxnet/gluon/rnn/rnn_cell.py @@ -102,6 +102,23 @@ def _mask_sequence_variable_length(F, data, length, valid_length, time_axis, mer squeeze_axis=True)) return outputs +def _reverse_sequences(sequences, unroll_step, valid_length=None): + if isinstance(sequences[0], symbol.Symbol): + F = symbol + else: + F = ndarray + + if valid_length is None: + reversed_sequences = list(reversed(sequences)) + else: + reversed_sequences = F.SequenceReverse(F.stack(*sequences, axis=0), + sequence_length=valid_length, + use_sequence_length=True) + reversed_sequences = F.split(reversed_sequences, axis=0, num_outputs=unroll_step, squeeze_axis=True) + + return reversed_sequences + + class RecurrentCell(Block): """Abstract base class for RNN cells @@ -1035,14 +1052,7 @@ def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=N self.reset() inputs, axis, F, batch_size = _format_sequence(length, inputs, layout, False) - if valid_length is None: - reversed_inputs = list(reversed(inputs)) - else: - reversed_inputs = F.SequenceReverse(F.stack(*inputs, axis=0), - sequence_length=valid_length, - use_sequence_length=True) - reversed_inputs = _as_list(F.split(reversed_inputs, axis=0, num_outputs=length, - squeeze_axis=True)) + reversed_inputs = list(_reverse_sequences(inputs, length, valid_length)) begin_state = _get_begin_state(self, F, begin_state, inputs, batch_size) states = begin_state @@ -1056,15 +1066,8 @@ def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=N begin_state=states[len(l_cell.state_info(batch_size)):], layout=layout, merge_outputs=False, valid_length=valid_length) - if valid_length is None: - reversed_r_outputs = list(reversed(r_outputs)) - else: - reversed_r_outputs = F.SequenceReverse(F.stack(*r_outputs, axis=0), - sequence_length=valid_length, - use_sequence_length=True, - axis=0) - reversed_r_outputs = _as_list(F.split(reversed_r_outputs, axis=0, num_outputs=length, - squeeze_axis=True)) + reversed_r_outputs = _reverse_sequences(r_outputs, length, valid_length) + if merge_outputs is None: merge_outputs = isinstance(l_outputs, tensor_types) l_outputs, _, _, _ = _format_sequence(None, l_outputs, layout, merge_outputs) diff --git a/tests/python/unittest/test_gluon_rnn.py b/tests/python/unittest/test_gluon_rnn.py index eee3adda2c65..edc43d21b36b 100644 --- a/tests/python/unittest/test_gluon_rnn.py +++ b/tests/python/unittest/test_gluon_rnn.py @@ -600,6 +600,34 @@ def test_layer_fill_shape(): assert layer.l0_i2h_weight.shape[1] == 7, layer.l0_i2h_weight.shape[1] +def test_bidirectional_unroll_valid_length(): + # Test BidirectionalCell. + # In 1.3.1 version, after hybridize( ), BidirectionalCell would failed when pass valid_length to unroll( ). + class BiLSTM(gluon.nn.HybridBlock): + def __init__(self, rnn_size, time_step, **kwargs): + super(BiLSTM, self).__init__(**kwargs) + self.time_step = time_step + with self.name_scope(): + self.bi_lstm = gluon.rnn.BidirectionalCell( + gluon.rnn.LSTMCell(rnn_size, prefix='rnn_l0_'), + gluon.rnn.LSTMCell(rnn_size, prefix='rnn_r0_'), + output_prefix='lstm_bi_') + + def hybrid_forward(self, F, inputs, valid_len): + outputs, states = self.bi_lstm.unroll(self.time_step, inputs, valid_length=valid_len, + layout='NTC', merge_outputs=True) + return outputs, states + + rnn_size, time_step = 100, 3 + net = BiLSTM(rnn_size, time_step) + net.initialize() + net.hybridize() + inputs_data = mx.nd.random.uniform(shape=(10, 3, 50)) + valid_len = mx.nd.array([1]*10) + outputs, _ = net(inputs_data, valid_len) + assert outputs.shape == (10, 3, 200) + + if __name__ == '__main__': import nose nose.runmodule()