From df4a4fdbfc2a0577833641077a39e0237cdcf4af Mon Sep 17 00:00:00 2001 From: Sandeep Krishnamurthy Date: Tue, 5 Feb 2019 17:04:07 -0800 Subject: [PATCH] Fix performance regression in normalize operator (#14055) * parallelize on channel forward pass * parallelize on channel normalize backward pass * Fix lint issues * Trying to fix CI build failure on GPU * Fix failing GPU test on CI Do not pass normalize param as is to GPU kernel * Fix to_tensor tests * Pass mean and std_dev as native types for kernel * Fix CI failure. Do not pass mean, std as vector to kernel --- src/operator/image/image_random-inl.h | 136 ++++++++++++++++------ tests/python/gpu/test_gluon_transforms.py | 33 ++---- 2 files changed, 106 insertions(+), 63 deletions(-) diff --git a/src/operator/image/image_random-inl.h b/src/operator/image/image_random-inl.h index c9dd85af616f..448016341f21 100644 --- a/src/operator/image/image_random-inl.h +++ b/src/operator/image/image_random-inl.h @@ -217,37 +217,50 @@ inline bool NormalizeOpType(const nnvm::NodeAttrs& attrs, template struct normalize_forward { template - MSHADOW_XINLINE static void Map(int j, DType* out_data, const DType* in_data, - const int i, const int length, const int step, - const DType mean, const DType std_dev) { - KERNEL_ASSIGN(out_data[step + i*length + j], req, - (in_data[step + i*length + j] - mean) / std_dev); + MSHADOW_XINLINE static void Map(uint32_t c, DType* out_data, const DType* in_data, + const float mean_d0, const float mean_d1, const float mean_d2, + const float std_d0, const float std_d1, const float std_d2, + const int length, const int step) { + float mean, std; + switch (c) { + case 0 : mean = mean_d0; + std = std_d0; + break; + case 1 : mean = mean_d1; + std = std_d1; + break; + case 2 : mean = mean_d2; + std = std_d2; + break; + } + #pragma omp parallel for + for (int i = 0; i < length; ++i) { + KERNEL_ASSIGN(out_data[step + c*length + i], req, + (in_data[step + c*length + i] - mean) / std); + } } }; template void NormalizeImpl(const OpContext &ctx, - const std::vector &inputs, - const std::vector &outputs, - const std::vector &req, - const NormalizeParam ¶m, - const int length, - const uint32_t channel, - const int step = 0) { + const std::vector &inputs, + const std::vector &outputs, + const std::vector &req, + const float mean_d0, const float mean_d1, + const float mean_d2, const float std_d0, + const float std_d1, const float std_d2, + const int length, + const uint32_t channel, + const int step = 0) { mshadow::Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { DType* input = inputs[0].dptr(); DType* output = outputs[0].dptr(); - - for (uint32_t i = 0; i < channel; ++i) { - DType mean = param.mean[param.mean.ndim() > i ? i : 0]; - DType std_dev = param.std[param.std.ndim() > i ? i : 0]; - mxnet_op::Kernel, xpu>::Launch( - s, length, output, input, - i, length, step, mean, std_dev); - } + mxnet_op::Kernel, xpu>::Launch( + s, channel, output, input, mean_d0, mean_d1, mean_d2, + std_d0, std_d1, std_d2, length, step); }); }); } @@ -264,11 +277,35 @@ void NormalizeOpForward(const nnvm::NodeAttrs &attrs, const NormalizeParam ¶m = nnvm::get(attrs.parsed); + // Note: We need mean and std_dev in the kernel. + // It is costly (device copy) to pass it as vector, for gpu kernel. + // Hence, passing it as below for performance. + float mean_d0, mean_d1, mean_d2; + float std_d0, std_d1, std_d2; + + // Mean and Std can be 1 or 3 D only. + if (param.mean.ndim() == 1) { + mean_d0 = mean_d1 = mean_d2 = param.mean[0]; + } else { + mean_d0 = param.mean[0]; + mean_d1 = param.mean[1]; + mean_d2 = param.mean[2]; + } + + if (param.std.ndim() == 1) { + std_d0 = std_d1 = std_d2 = param.std[0]; + } else { + std_d0 = param.std[0]; + std_d1 = param.std[1]; + std_d2 = param.std[2]; + } + // 3D input (c, h, w) if (inputs[0].ndim() == 3) { const int length = inputs[0].shape_[1] * inputs[0].shape_[2]; const uint32_t channel = inputs[0].shape_[0]; - NormalizeImpl(ctx, inputs, outputs, req, param, length, channel); + NormalizeImpl(ctx, inputs, outputs, req, mean_d0, mean_d1, mean_d2, + std_d0, std_d1, std_d2, length, channel); } else if (inputs[0].ndim() == 4) { // 4D input (n, c, h, w) const int batch_size = inputs[0].shape_[0]; @@ -278,7 +315,8 @@ void NormalizeOpForward(const nnvm::NodeAttrs &attrs, #pragma omp parallel for for (auto n = 0; n < batch_size; ++n) { - NormalizeImpl(ctx, inputs, outputs, req, param, length, channel, n*step); + NormalizeImpl(ctx, inputs, outputs, req, mean_d0, mean_d1, mean_d2, + std_d0, std_d1, std_d2, length, channel, n*step); } } } @@ -287,12 +325,25 @@ void NormalizeOpForward(const nnvm::NodeAttrs &attrs, template struct normalize_backward { template - MSHADOW_XINLINE static void Map(int j, DType* in_grad, const DType* out_grad, - const int i, const int length, - const int step, const DType std_dev) { + MSHADOW_XINLINE static void Map(uint32_t c, DType* in_grad, const DType* out_grad, + const float std_d0, const float std_d1, const float std_d2, + const int length, const int step) { // d/dx{(x - mean) / std_dev} => (1 / std_dev) - KERNEL_ASSIGN(in_grad[step + i*length + j], req, - out_grad[step + i*length + j] * (1.0 / std_dev)); + float std_dev; + switch (c) { + case 0 : std_dev = std_d0; + break; + case 1 : std_dev = std_d1; + break; + case 2 : std_dev = std_d2; + break; + } + + #pragma omp parallel for + for (int i = 0; i < length; ++i) { + KERNEL_ASSIGN(in_grad[step + c*length + i], req, + out_grad[step + c*length + i] * (1.0 / std_dev)); + } } }; @@ -301,21 +352,18 @@ void NormalizeBackwardImpl(const OpContext &ctx, const std::vector &inputs, const std::vector &outputs, const std::vector &req, - const NormalizeParam ¶m, + const float std_d0, const float std_d1, const float std_d2, const int length, const uint32_t channel, const int step = 0) { mshadow::Stream *s = ctx.get_stream(); - const TBlob& out_grad = inputs[0]; - const TBlob& in_grad = outputs[0]; + MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { - for (uint32_t i = 0; i < channel; ++i) { - DType std_dev = param.std[param.std.ndim() > i ? i : 0]; - mxnet_op::Kernel, xpu>::Launch( - s, length, in_grad.dptr(), out_grad.dptr(), - i, length, step, std_dev); - } + DType* out_grad = inputs[0].dptr(); + DType* in_grad = outputs[0].dptr(); + mxnet_op::Kernel, xpu>::Launch( + s, channel, in_grad, out_grad, std_d0, std_d1, std_d2, length, step); }); }); } @@ -331,6 +379,16 @@ void NormalizeOpBackward(const nnvm::NodeAttrs &attrs, CHECK_EQ(req.size(), 1U); const NormalizeParam ¶m = nnvm::get(attrs.parsed); + float std_d0, std_d1, std_d2; + + // Std can be 1 or 3 D only + if (param.std.ndim() == 1) { + std_d0 = std_d1 = std_d2 = param.std[0]; + } else { + std_d0 = param.std[0]; + std_d1 = param.std[1]; + std_d2 = param.std[2]; + } // Note: inputs[0] is out_grad const TBlob& in_data = inputs[1]; @@ -339,7 +397,7 @@ void NormalizeOpBackward(const nnvm::NodeAttrs &attrs, if (in_data.ndim() == 3) { const int length = in_data.shape_[1] * in_data.shape_[2]; const uint32_t channel = in_data.shape_[0]; - NormalizeBackwardImpl(ctx, inputs, outputs, req, param, length, channel); + NormalizeBackwardImpl(ctx, inputs, outputs, req, std_d0, std_d1, std_d2, length, channel); } else if (in_data.ndim() == 4) { // 4D input (n, c, h, w) const int batch_size = in_data.shape_[0]; @@ -349,7 +407,9 @@ void NormalizeOpBackward(const nnvm::NodeAttrs &attrs, #pragma omp parallel for for (auto n = 0; n < batch_size; ++n) { - NormalizeBackwardImpl(ctx, inputs, outputs, req, param, length, channel, n*step); + NormalizeBackwardImpl(ctx, inputs, outputs, req, + std_d0, std_d1, std_d2, length, + channel, n*step); } } } diff --git a/tests/python/gpu/test_gluon_transforms.py b/tests/python/gpu/test_gluon_transforms.py index 3927d4c1f094..23b34d334888 100644 --- a/tests/python/gpu/test_gluon_transforms.py +++ b/tests/python/gpu/test_gluon_transforms.py @@ -80,32 +80,15 @@ def test_to_tensor(): data_in.astype(dtype=np.float32) / 255.0, (2, 0, 1))) # 4D Input - data_in_4d = nd.random.uniform(0, 1, (2, 3, 300, 300)) - out_nd_4d = transforms.Normalize(mean=(0, 1, 2), std=(3, 2, 1))(data_in_4d) - data_expected_4d = data_in_4d.asnumpy() - data_expected_4d[0][:][:][0] = data_expected_4d[0][:][:][0] / 3.0 - data_expected_4d[0][:][:][1] = (data_expected_4d[0][:][:][1] - 1.0) / 2.0 - data_expected_4d[0][:][:][2] = data_expected_4d[0][:][:][2] - 2.0 - data_expected_4d[1][:][:][0] = data_expected_4d[1][:][:][0] / 3.0 - data_expected_4d[1][:][:][1] = (data_expected_4d[1][:][:][1] - 1.0) / 2.0 - data_expected_4d[1][:][:][2] = data_expected_4d[1][:][:][2] - 2.0 - assert_almost_equal(data_expected_4d, out_nd_4d.asnumpy()) - - # Default normalize values i.e., mean=0, std=1 - data_in_3d_def = nd.random.uniform(0, 1, (3, 300, 300)) - out_nd_3d_def = transforms.Normalize()(data_in_3d_def) - data_expected_3d_def = data_in_3d_def.asnumpy() - assert_almost_equal(data_expected_3d_def, out_nd_3d_def.asnumpy()) - - # Invalid Input - Neither 3D or 4D input - invalid_data_in = nd.random.uniform(0, 1, (5, 5, 3, 300, 300)) - normalize_transformer = transforms.Normalize(mean=(0, 1, 2), std=(3, 2, 1)) - assertRaises(MXNetError, normalize_transformer, invalid_data_in) + data_in = np.random.uniform(0, 255, (5, 300, 300, 3)).astype(dtype=np.uint8) + out_nd = transforms.ToTensor()(nd.array(data_in, dtype='uint8')) + assert_almost_equal(out_nd.asnumpy(), np.transpose( + data_in.astype(dtype=np.float32) / 255.0, (0, 3, 1, 2))) - # Invalid Input - Channel neither 1 or 3 - invalid_data_in = nd.random.uniform(0, 1, (5, 4, 300, 300)) - normalize_transformer = transforms.Normalize(mean=(0, 1, 2), std=(3, 2, 1)) - assertRaises(MXNetError, normalize_transformer, invalid_data_in) + # Invalid Input + invalid_data_in = nd.random.uniform(0, 255, (5, 5, 300, 300, 3)).astype(dtype=np.uint8) + transformer = transforms.ToTensor() + assertRaises(MXNetError, transformer, invalid_data_in) @with_seed() def test_resize():