diff --git a/src/operator/contrib/boolean_mask-inl.h b/src/operator/contrib/boolean_mask-inl.h index ac0681ba927b..775981f76aa8 100644 --- a/src/operator/contrib/boolean_mask-inl.h +++ b/src/operator/contrib/boolean_mask-inl.h @@ -50,83 +50,53 @@ struct BooleanMaskParam : public dmlc::Parameter { } }; +struct BooleanMaskForwardKernel { + template + static void MSHADOW_XINLINE Map(int i, + DType* out, + const DType* data, + const int32_t* idx, + const size_t col_size) { + int row_id = i / col_size; + int col_id = i % col_size; + int32_t prev = (row_id == 0) ? 0 : idx[row_id - 1]; + int32_t curr = idx[row_id]; + if (prev != curr) { + out[prev * col_size + col_id] = data[i]; + } + } +}; + +struct BooleanMaskBackwardKernel { + template + static void MSHADOW_XINLINE Map(int i, + DType* igrad, + const DType* ograd, + const int32_t* idx, + const size_t col_size) { + int row_id = i / col_size; + int col_id = i % col_size; + int32_t prev = (row_id == 0) ? 0 : idx[row_id - 1]; + int32_t curr = idx[row_id]; + if (prev != curr) { + igrad[i] = ograd[prev * col_size + col_id]; + } + } +}; + template inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs, const OpContext &ctx, const std::vector &inputs, const std::vector &req, - const std::vector &outputs) { - // TODO(@junrushao1994): This implementation is a proof-of-concept, - // hence very slow actually. Performance should be improved in the future. - CHECK_EQ(inputs.size(), 2U); - CHECK_EQ(outputs.size(), 1U); - const BooleanMaskParam& param = nnvm::get(attrs.parsed); - const int axis = param.axis; - const NDArray &data = inputs[0]; - const NDArray &idx = inputs[1]; - const NDArray &out = outputs[0]; - CHECK_EQ(axis, 0) << "Not supported yet"; - CHECK_EQ(data.shape()[axis], idx.shape()[0]); - CHECK_EQ(idx.shape().ndim(), 1U); - // count the number of 1s in `idx`, so that we could know the output dimension - size_t valid_num = 0; - MSHADOW_TYPE_SWITCH(idx.dtype(), DType, { - DType* idx_dptr = idx.data().dptr(); - int length = idx.shape()[0]; - for (int i = 0; i < length; i++) { - if (idx_dptr[i]) { - ++valid_num; - } - } - }); - // set the output shape forcefully - TShape s = data.shape(); - s[axis] = valid_num; - const_cast(out).Init(s); - // do the copy - MSHADOW_TYPE_SWITCH(idx.dtype(), DType, { - DType* idx_dptr = idx.data().dptr(); - int length = idx.shape()[0]; - mshadow::Stream *stream = ctx.get_stream(); - for (int i = 0, j = 0; i < length; ++i) { - if (idx_dptr[i]) { - NDArray src = data.At(i); - NDArray dst = out.At(j++); - CHECK(src.shape() == dst.shape()); - mxnet_op::copy(stream, dst.data(), src.data()); - } - } - }); -} + const std::vector &outputs); template inline void BooleanMaskBackward(const nnvm::NodeAttrs& attrs, const OpContext &ctx, const std::vector &inputs, const std::vector &req, - const std::vector &outputs) { - CHECK_EQ(inputs.size(), 3U); - CHECK_EQ(outputs.size(), 2U); - // inputs: {ograd, data, idx} - // outputs: {igrad_data, igrad_idx} - const NDArray& ograd = inputs[0]; - const NDArray& idx = inputs[2]; - const NDArray& igrad_data = outputs[0]; - MSHADOW_TYPE_SWITCH(idx.dtype(), DType, { - DType* idx_dptr = idx.data().dptr(); - int length = idx.shape()[0]; - mshadow::Stream *stream = ctx.get_stream(); - Fill(stream, igrad_data.data(), req[0], 0); - for (int i = 0, j = 0; i < length; ++i) { - if (idx_dptr[i]) { - NDArray src = ograd.At(j++); - NDArray dst = igrad_data.At(i); - CHECK(src.shape() == dst.shape()); - mxnet_op::copy(stream, dst.data(), src.data()); - } - } - }); -} + const std::vector &outputs); } // namespace op } // namespace mxnet diff --git a/src/operator/contrib/boolean_mask.cc b/src/operator/contrib/boolean_mask.cc index 2dcafb6b9494..e62fe41cd146 100644 --- a/src/operator/contrib/boolean_mask.cc +++ b/src/operator/contrib/boolean_mask.cc @@ -28,7 +28,6 @@ namespace op { DMLC_REGISTER_PARAMETER(BooleanMaskParam); - bool BooleanMaskType(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs) { @@ -75,9 +74,118 @@ bool BooleanMaskBackStorageType(const nnvm::NodeAttrs& attrs, return true; } +struct BooleanMaskForwardCPUKernel { + template + static void Map(int i, + DType* out, + const DType* data, + const int32_t* idx, + const size_t col_size) { + // i is row id already + int32_t prev = (i == 0) ? 0 : idx[i - 1]; + int32_t curr = idx[i]; + if (prev != curr) { + std::memcpy(out + prev * col_size, data + i * col_size, col_size * sizeof(DType)); + } + } +}; + +struct BooleanMaskBackwardCPUKernel { + template + static void Map(int i, + DType* igrad, + const DType* ograd, + const int32_t* idx, + const size_t col_size) { + // i is row id already + int32_t prev = (i == 0) ? 0 : idx[i - 1]; + int32_t curr = idx[i]; + if (prev != curr) { + std::memcpy(igrad + i * col_size, ograd + prev * col_size, col_size * sizeof(DType)); + } + } +}; + +template<> +inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + // TODO(@junrushao1994): This implementation is a proof-of-concept, + // hence very slow actually. Performance should be improved in the future. + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + const BooleanMaskParam& param = nnvm::get(attrs.parsed); + const int axis = param.axis; + const NDArray &data = inputs[0]; + const NDArray &idx = inputs[1]; + const NDArray &out = outputs[0]; + CHECK_EQ(axis, 0) << "Not supported yet"; + CHECK_EQ(data.shape()[axis], idx.shape()[0]); + CHECK_EQ(idx.shape().ndim(), 1U); + // count the number of 1s in `idx`, so that we could know the output dimension + size_t idx_size = idx.shape()[0]; + std::vector prefix_sum(idx_size, 0); + size_t valid_num = 0; + // Calculate prefix sum + MSHADOW_TYPE_SWITCH(idx.dtype(), DType, { + DType* idx_dptr = idx.data().dptr(); + for (size_t i = 0; i < idx_size; i++) { + prefix_sum[i] = (i == 0) ? 0 : prefix_sum[i - 1]; + prefix_sum[i] += (idx_dptr[i]) ? 1 : 0; + } + valid_num = prefix_sum[idx_size - 1]; + }); + // set the output shape forcefully + TShape s = data.shape(); + s[axis] = valid_num; + const_cast(out).Init(s); + // do the copy + MSHADOW_TYPE_SWITCH(data.dtype(), DType, { + size_t input_size = data.shape().Size(); + size_t col_size = input_size / idx_size; + mshadow::Stream *stream = ctx.get_stream(); + mxnet_op::Kernel::Launch( + stream, idx_size, out.data().dptr(), data.data().dptr(), + prefix_sum.data(), col_size); + }); +} + +template<> +inline void BooleanMaskBackward(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + CHECK_EQ(inputs.size(), 3U); + CHECK_EQ(outputs.size(), 2U); + // inputs: {ograd, data, idx} + // outputs: {igrad_data, igrad_idx} + const NDArray& ograd = inputs[0]; + const NDArray& idx = inputs[2]; + const NDArray& igrad_data = outputs[0]; + MSHADOW_TYPE_SWITCH(igrad_data.dtype(), DType, { + MSHADOW_TYPE_SWITCH(idx.dtype(), IType, { + size_t input_size = igrad_data.shape().Size(); + size_t idx_size = idx.shape()[0]; + size_t col_size = input_size / idx_size; + std::vector prefix_sum(idx_size, 0); + IType* idx_dptr = idx.data().dptr(); + for (size_t i = 0; i < idx_size; i++) { + prefix_sum[i] = (i == 0) ? 0 : prefix_sum[i - 1]; + prefix_sum[i] += (idx_dptr[i]) ? 1 : 0; + } + mshadow::Stream *stream = ctx.get_stream(); + mxnet_op::Kernel::Launch( + stream, idx_size, igrad_data.data().dptr(), ograd.data().dptr(), + prefix_sum.data(), col_size); + }); + }); +} + NNVM_REGISTER_OP(_contrib_boolean_mask) .describe(R"code( -Experimental CPU-only support for boolean masking. Given an n-d NDArray data, and a 1-d NDArray index, the operator produces an un-predeterminable shaped n-d NDArray out, which stands for the rows in x where the corresonding element in index is non-zero. @@ -94,6 +202,10 @@ which stands for the rows in x where the corresonding element in index is non-ze .set_attr_parser(ParamParser) .set_num_inputs(2) .set_num_outputs(1) +.set_attr("FListInputNames", + [](const NodeAttrs& attrs) { + return std::vector{"data", "index"}; + }) .set_attr("FInferType", BooleanMaskType) .set_attr("FComputeEx", BooleanMaskForward) .set_attr("FInferStorageType", BooleanMaskStorageType) diff --git a/src/operator/contrib/boolean_mask.cu b/src/operator/contrib/boolean_mask.cu new file mode 100644 index 000000000000..25a781ceec4b --- /dev/null +++ b/src/operator/contrib/boolean_mask.cu @@ -0,0 +1,165 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +/*! + * Copyright (c) 2018 by Contributors + * \file boolean_mask.cu +*/ + +#include "./boolean_mask-inl.h" +#include + +namespace mxnet { +namespace op { + +template<> +inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mshadow; + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + const BooleanMaskParam& param = nnvm::get(attrs.parsed); + const int axis = param.axis; + const NDArray &data = inputs[0]; + const NDArray &idx = inputs[1]; + const NDArray &out = outputs[0]; + CHECK_EQ(axis, 0) << "Not supported yet"; + CHECK_EQ(data.shape()[axis], idx.shape()[0]); + CHECK_EQ(idx.shape().ndim(), 1U); + Stream* s = ctx.get_stream(); + // count the number of 1s in `idx`, so that we could know the output dimension + size_t idx_size = idx.shape()[0]; + int32_t valid_num = 0; + int32_t* prefix_sum = nullptr; + void* d_temp_storage = nullptr; + size_t temp_storage_bytes = 0; + // Calculate total temporary memory size + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + prefix_sum, + prefix_sum, + idx_size, + Stream::GetStream(s)); + size_t buffer_size = idx_size * sizeof(int32_t); + temp_storage_bytes += buffer_size; + // Allocate memory on GPU and allocate pointer + Tensor workspace = + ctx.requested[0].get_space_typed(Shape1(temp_storage_bytes), s); + prefix_sum = reinterpret_cast(workspace.dptr_); + d_temp_storage = workspace.dptr_ + buffer_size; + MSHADOW_TYPE_SWITCH(idx.dtype(), IType, { + mxnet_op::Kernel::Launch( + s, idx.shape()[0], prefix_sum, idx.data().dptr()); + }); + // Calculate prefix sum + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + prefix_sum, + prefix_sum, + idx_size, + Stream::GetStream(s)); + CUDA_CALL(cudaMemcpy(&valid_num, &prefix_sum[idx_size - 1], sizeof(int32_t), + cudaMemcpyDeviceToHost)); + CHECK(valid_num > 0) << "boolean_mask behavior not defined when all masks are 0"; + // Set the output shape forcefully + TShape data_shape = data.shape(); + data_shape[axis] = valid_num; + const_cast(out).Init(data_shape); + size_t input_size = data.shape().Size(); + size_t col_size = input_size / idx.shape()[0]; + // Do the copy + MSHADOW_TYPE_SWITCH(out.dtype(), DType, { + mxnet_op::Kernel::Launch( + s, input_size, out.data().dptr(), data.data().dptr(), prefix_sum, col_size); + }); +} + +template<> +inline void BooleanMaskBackward(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mshadow; + CHECK_EQ(inputs.size(), 3U); + CHECK_EQ(outputs.size(), 2U); + // inputs: {ograd, data, idx} + // outputs: {igrad_data, igrad_idx} + const NDArray& ograd = inputs[0]; + const NDArray& idx = inputs[2]; + const NDArray& igrad_data = outputs[0]; + Stream* s = ctx.get_stream(); + // Count the number of 1s in `idx`, so that we could know the output dimension + size_t idx_size = idx.shape()[0]; + int32_t* prefix_sum = nullptr; + void* d_temp_storage = nullptr; + size_t temp_storage_bytes = 0; + // Calculate total temporary memory size + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + prefix_sum, + prefix_sum, + idx_size, + Stream::GetStream(s)); + size_t buffer_size = idx_size * sizeof(int32_t); + temp_storage_bytes += buffer_size; + // Allocate memory on GPU and allocate pointer + Tensor workspace = + ctx.requested[0].get_space_typed(Shape1(temp_storage_bytes), s); + prefix_sum = reinterpret_cast(workspace.dptr_); + d_temp_storage = workspace.dptr_ + buffer_size; + MSHADOW_TYPE_SWITCH(idx.dtype(), IType, { + mxnet_op::Kernel::Launch( + s, idx.shape()[0], prefix_sum, idx.data().dptr()); + }); + // Calculate prefix sum + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + prefix_sum, + prefix_sum, + idx_size, + Stream::GetStream(s)); + size_t input_size = igrad_data.shape().Size(); + size_t col_size = input_size / idx_size; + // Backward pass + MSHADOW_TYPE_SWITCH(igrad_data.dtype(), DType, { + mxnet_op::Kernel::Launch( + s, input_size, igrad_data.data().dptr(), ograd.data().dptr(), + prefix_sum, col_size); + }); +} + +NNVM_REGISTER_OP(_contrib_boolean_mask) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FComputeEx", BooleanMaskForward); + +NNVM_REGISTER_OP(_backward_contrib_boolean_mask) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FComputeEx", BooleanMaskBackward); + +} // namespace op +} // namespace mxnet diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py index 7b5b9ebf3be4..c1a408e9fbbb 100644 --- a/tests/python/unittest/test_operator.py +++ b/tests/python/unittest/test_operator.py @@ -4861,8 +4861,6 @@ def test_index_copy(): @with_seed() def test_boolean_mask(): - if default_context().device_type != 'cpu': - return data = mx.nd.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]]) index = mx.nd.array([0, 1, 0]) data.attach_grad()