diff --git a/src/operator/nn/mkldnn/mkldnn_deconvolution.cc b/src/operator/nn/mkldnn/mkldnn_deconvolution.cc index aec5d13c5de9..9d00cf8e36d5 100644 --- a/src/operator/nn/mkldnn/mkldnn_deconvolution.cc +++ b/src/operator/nn/mkldnn/mkldnn_deconvolution.cc @@ -296,10 +296,11 @@ static void MKLDNNDeconvFwdBiasPostProcess(const DeconvolutionParam& param, typedef float DType; Stream *s = ctx.get_stream(); Tensor b = bias.data().get(s); - // If the output data is stored in a special MKLDNN format, data() - // automatically converts its format to the default format. + // The output data is stored in a special MKLDNN format, + // converts its format to the default format. // Unfortunately, MKLDNN doesn't support broadcast. - Tensor out_cpu = out_data[deconv::kOut].data().get(s); + auto out_data_def = out_data[deconv::kOut].Reorder2Default(); + Tensor out_cpu = out_data_def.data().get(s); out_cpu += mshadow::expr::broadcast<1>(b, out_cpu.shape_); } } diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py index 52fe69bbd434..b702e6bdd6e3 100644 --- a/tests/python/unittest/test_operator.py +++ b/tests/python/unittest/test_operator.py @@ -1512,6 +1512,28 @@ def test_deconvolution(): pad = (3,) ) +@with_seed() +def test_deconvolution_forward_with_bias(): + """Check if deconvolution forward can work well with bias=True + """ + def check_deconvolution_forward_with_bias(shape=(1, 16, 5, 5), num_filter=32, num_group=1, kernel=(3, 3), pad=(1, 1)): + x = mx.sym.Variable('x') + w = mx.sym.Variable('w') + input_data = mx.random.uniform(-5, 5, shape, ctx=mx.cpu()) + y = mx.sym.Deconvolution(data=x, weight=w, num_filter=num_filter, num_group=num_group, kernel=kernel, no_bias=False, pad=pad) + exe = y.simple_bind(ctx=mx.cpu(), x=shape, grad_req='null') + + exe.arg_arrays[0][:] = np.random.normal(size=exe.arg_arrays[0].shape) + exe.arg_arrays[1][:] = np.random.normal(size=exe.arg_arrays[1].shape) + + exe.forward(is_train=False) + o = exe.outputs[0] + t = o.asnumpy() + check_deconvolution_forward_with_bias((1, 16, 5), 32, 1, (3,), (1,)) + check_deconvolution_forward_with_bias((32, 16, 5), 32, 1, (3,), (1,)) + check_deconvolution_forward_with_bias((1, 16, 5, 5), 32, 1, (3, 3), (1, 1)) + check_deconvolution_forward_with_bias((32, 16, 5, 5), 32, 1, (3, 3), (1, 1)) + def check_nearest_upsampling_with_shape(shapes, scale, root_scale): arr = {'arg_%d'%i: mx.random.uniform(-10.0, 10.0, shape, ctx=mx.cpu()).copyto(default_context()) for i, shape in zip(range(len(shapes)), shapes)}