From 874fb89cd33b0e4affd7f3fb1b4ae4e09f25ef84 Mon Sep 17 00:00:00 2001 From: Sandeep Krishnamurthy Date: Thu, 9 May 2019 16:12:18 -0700 Subject: [PATCH] Add API documentation for upsampling operator with examples (#14919) * Add API documentation for upsampling operator with examples * Update src/operator/nn/upsampling.cc Co-Authored-By: Aaron Markham * Update src/operator/nn/upsampling.cc Co-Authored-By: Aaron Markham * Update src/operator/nn/upsampling.cc Co-Authored-By: Aaron Markham * Make API doc example as pseudocode than code --- src/operator/nn/upsampling.cc | 53 +++++++++++++++++++++++++++++++++-- 1 file changed, 50 insertions(+), 3 deletions(-) diff --git a/src/operator/nn/upsampling.cc b/src/operator/nn/upsampling.cc index cb57b1b2d16f..971ff6ad560b 100644 --- a/src/operator/nn/upsampling.cc +++ b/src/operator/nn/upsampling.cc @@ -121,9 +121,56 @@ struct UpSamplingGrad { DMLC_REGISTER_PARAMETER(UpSamplingParam); NNVM_REGISTER_OP(UpSampling) -.describe("Performs nearest neighbor/bilinear up sampling to inputs. " - "Bilinear upsampling makes use of deconvolution. Therefore, " - "provide 2 inputs - data and weight. ") +.describe(R"code(Upsamples the given input data. + +Two algorithms (``sample_type``) are available for upsampling: + +- Nearest Neighbor +- Bilinear + +**Nearest Neighbor Upsampling** + +Input data is expected to be NCHW. + +Example:: + + x = [[[[1. 1. 1.] + [1. 1. 1.] + [1. 1. 1.]]]] + + UpSampling(x, scale=2, sample_type='nearest') = [[[[1. 1. 1. 1. 1. 1.] + [1. 1. 1. 1. 1. 1.] + [1. 1. 1. 1. 1. 1.] + [1. 1. 1. 1. 1. 1.] + [1. 1. 1. 1. 1. 1.] + [1. 1. 1. 1. 1. 1.]]]] + +**Bilinear Upsampling** + +Uses `deconvolution` algorithm under the hood. You need provide both input data and the kernel. + +Input data is expected to be NCHW. + +`num_filter` is expected to be same as the number of channels. + +Example:: + + x = [[[[1. 1. 1.] + [1. 1. 1.] + [1. 1. 1.]]]] + + w = [[[[1. 1. 1. 1.] + [1. 1. 1. 1.] + [1. 1. 1. 1.] + [1. 1. 1. 1.]]]] + + UpSampling(x, w, scale=2, sample_type='bilinear', num_filter=1) = [[[[1. 2. 2. 2. 2. 1.] + [2. 4. 4. 4. 4. 2.] + [2. 4. 4. 4. 4. 2.] + [2. 4. 4. 4. 4. 2.] + [2. 4. 4. 4. 4. 2.] + [1. 2. 2. 2. 2. 1.]]]] +)code" ADD_FILELINE) .set_num_inputs([](const NodeAttrs& attrs) { const UpSamplingParam& params = nnvm::get(attrs.parsed); return params.sample_type == up_enum::kNearest ? params.num_args : 2;