From 2347017501da548011d4b617898319da8ea207a4 Mon Sep 17 00:00:00 2001 From: Sergey Kolychev Date: Thu, 21 Feb 2019 09:51:42 -0800 Subject: [PATCH] Two more gluon loss classes. (#14194) Visualization fixes. Gluon rnn rework, including hybridization. Exposed GPU memory info to perl level. --- perl-package/AI-MXNet/Changes | 6 + perl-package/AI-MXNet/META.json | 4 +- perl-package/AI-MXNet/META.yml | 4 +- perl-package/AI-MXNet/Makefile.PL | 4 +- perl-package/AI-MXNet/README | 2 +- perl-package/AI-MXNet/lib/AI/MXNet.pm | 2 +- perl-package/AI-MXNet/lib/AI/MXNet/Context.pm | 24 ++ .../AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm | 171 +++++++++++ .../AI-MXNet/lib/AI/MXNet/Gluon/RNN/Cell.pm | 131 +++++++- .../AI-MXNet/lib/AI/MXNet/Gluon/RNN/Layer.pm | 285 ++++++++++++------ .../AI-MXNet/lib/AI/MXNet/Initializer.pm | 18 ++ perl-package/AI-MXNet/lib/AI/MXNet/NDArray.pm | 6 +- perl-package/AI-MXNet/lib/AI/MXNet/Symbol.pm | 18 +- .../AI-MXNet/lib/AI/MXNet/Visualization.pm | 4 + perl-package/AI-MXNet/t/test_gluon_rnn.t | 29 +- perl-package/AI-MXNet/t/test_loss.t | 46 ++- perl-package/AI-MXNetCAPI/Changes | 3 + perl-package/AI-MXNetCAPI/META.json | 2 +- perl-package/AI-MXNetCAPI/META.yml | 2 +- perl-package/AI-MXNetCAPI/README | 2 +- perl-package/AI-MXNetCAPI/lib/AI/MXNetCAPI.pm | 2 +- perl-package/AI-MXNetCAPI/mxnet_typemaps.i | 13 +- 22 files changed, 627 insertions(+), 151 deletions(-) diff --git a/perl-package/AI-MXNet/Changes b/perl-package/AI-MXNet/Changes index 8bd43f3be205..e67fe39b49ab 100644 --- a/perl-package/AI-MXNet/Changes +++ b/perl-package/AI-MXNet/Changes @@ -1,5 +1,11 @@ Revision history for Perl extension AI::MXNet +1.4 Mon Feb 18 11:54:07 PST 2019 + - Two more gluon loss classes + - Visualization fixes + - Gluon rnn rework, including hybridization + - Exposed GPU memory info to perl level. + 1.33 Thu Oct 4 13:25:56 PDT 2018 - Added randn function. - Internal SELU function on C++ layer. diff --git a/perl-package/AI-MXNet/META.json b/perl-package/AI-MXNet/META.json index bbbea734ccf8..37c573c279f5 100644 --- a/perl-package/AI-MXNet/META.json +++ b/perl-package/AI-MXNet/META.json @@ -30,7 +30,7 @@ }, "runtime" : { "requires" : { - "AI::MXNetCAPI" : "1.33", + "AI::MXNetCAPI" : "1.4", "AI::NNVMCAPI" : "1.3", "Function::Parameters" : "1.0705", "Hash::Ordered" : "0.012", @@ -45,5 +45,5 @@ } }, "release_status" : "stable", - "version" : "1.33" + "version" : "1.4" } diff --git a/perl-package/AI-MXNet/META.yml b/perl-package/AI-MXNet/META.yml index 26e37b572600..692ca0307948 100644 --- a/perl-package/AI-MXNet/META.yml +++ b/perl-package/AI-MXNet/META.yml @@ -34,7 +34,7 @@ no_index: - t - inc requires: - AI::MXNetCAPI: '1.33' + AI::MXNetCAPI: '1.4' AI::NNVMCAPI: '1.3' Function::Parameters: '1.0705' Hash::Ordered: '0.012' @@ -42,4 +42,4 @@ requires: Mouse: v2.1.0 PDL: '2.007' PDL::CCS: '1.23.4' -version: '1.33' +version: '1.4' diff --git a/perl-package/AI-MXNet/Makefile.PL b/perl-package/AI-MXNet/Makefile.PL index 6d70b21344c2..19aba3fee4a5 100644 --- a/perl-package/AI-MXNet/Makefile.PL +++ b/perl-package/AI-MXNet/Makefile.PL @@ -36,7 +36,7 @@ my %WriteMakefileArgs = ( "LICENSE" => "apache_2_0", "NAME" => "AI::MXNet", "PREREQ_PM" => { - "AI::MXNetCAPI" => "1.33", + "AI::MXNetCAPI" => "1.4", "AI::NNVMCAPI" => "1.3", "Function::Parameters" => "1.0705", "Hash::Ordered" => "0.012", @@ -46,7 +46,7 @@ my %WriteMakefileArgs = ( "GraphViz" => "2.14" }, "TEST_REQUIRES" => {}, - "VERSION" => "1.33", + "VERSION" => "1.4", "test" => { "TESTS" => "t/*.t" } diff --git a/perl-package/AI-MXNet/README b/perl-package/AI-MXNet/README index f370db3804e9..4935b6384071 100644 --- a/perl-package/AI-MXNet/README +++ b/perl-package/AI-MXNet/README @@ -1,5 +1,5 @@ This archive contains the distribution AI-MXNet, -version 1.33: +version 1.4: Perl interface to MXNet machine learning library diff --git a/perl-package/AI-MXNet/lib/AI/MXNet.pm b/perl-package/AI-MXNet/lib/AI/MXNet.pm index 6a559a394a9f..80699b14311c 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet.pm @@ -51,7 +51,7 @@ use AI::MXNet::Gluon; use AI::MXNet::NDArray::Sparse; use AI::MXNet::Symbol::Sparse; use AI::MXNet::Engine; -our $VERSION = '1.33'; +our $VERSION = '1.4'; sub import { diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Context.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Context.pm index 826e7baf905b..7ae99be7b99e 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Context.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Context.pm @@ -190,6 +190,30 @@ method num_gpus() return scalar(check_call(AI::MXNetCAPI::GetGPUCount())); } +=head2 gpu_memory_info + + Query CUDA for the free and total bytes of GPU global memory. + + Parameters + ---------- + $device_id=0 : int, optional + The device id of the GPU device. + + Raises + ------ + Will raise an exception on any CUDA error. + + Returns + ------- + ($free, $total) : (int, int) + Free and total memory in bytes. +=cut + +method gpu_memory_info($device_id=0) +{ + return check_call(AI::MXNetCAPI::GetGPUMemoryInformation64($device_id)); +} + method current_ctx() { return $AI::MXNet::current_ctx; diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm index 7dea68ffa16d..3eb62eb5a2ef 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm @@ -824,4 +824,175 @@ method hybrid_forward( __PACKAGE__->register('AI::MXNet::Gluon::Loss'); +package AI::MXNet::Gluon::PoissonNLLLoss; +use AI::MXNet::Gluon::Mouse; +extends 'AI::MXNet::Gluon::Loss'; +has 'from_logits' => (is => 'ro', isa => 'Bool', default => 1); +has 'compute_full' => (is => 'ro', isa => 'Bool', default => 0); + +=head1 NAME + + AI::MXNet::Gluon::PoissonNLLLoss +=cut + +=head1 DESCRIPTION + + For a target (Random Variable) in a Poisson distribution, the function calculates the Negative + Log likelihood loss. + PoissonNLLLoss measures the loss accrued from a poisson regression prediction made by the model. + + .. math:: + L = \text{pred} - \text{target} * \log(\text{pred}) +\log(\text{target!}) + + `pred`, `target` can have arbitrary shape as long as they have the same number of elements. + + Parameters + ---------- + from_logits : boolean, default True + indicating whether log(predicted) value has already been computed. If True, the loss is computed as + :math:`\exp(\text{pred}) - \text{target} * \text{pred}`, and if False, then loss is computed as + :math:`\text{pred} - \text{target} * \log(\text{pred}+\text{epsilon})`.The default value + weight : float or None + Global scalar weight for loss. + batch_axis : int, default 0 + The axis that represents mini-batch. + compute_full: boolean, default False + Indicates whether to add an approximation(Stirling factor) for the Factorial term in the formula for the loss. + The Stirling factor is: + :math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})` + epsilon: float, default 1e-08 + This is to avoid calculating log(0) which is not defined. + + + Inputs: + - **pred**: Predicted value + - **target**: Random variable(count or number) which belongs to a Poisson distribution. + - **sample_weight**: element-wise weighting tensor. Must be broadcastable + to the same shape as pred. For example, if pred has shape (64, 10) + and you want to weigh each sample in the batch separately, + sample_weight should have shape (64, 1). + + Outputs: + - **loss**: Average loss (shape=(1,1)) of the loss tensor with shape (batch_size,). +=cut + +method hybrid_forward( + GluonClass $F, GluonInput $pred, GluonInput $target, + Maybe[GluonInput] $sample_weight=, Maybe[Num] $epsilon=1e-08 +) +{ + $target = __PACKAGE__->_reshape_like($F, $target, $pred); + my $loss; + if($self->from_logits) + { + $loss = $F->exp($pred) - $target * $pred; + } + else + { + $loss = $pred - $target * $F->log($pred + $epsilon); + if($self->compute_full) + { + my $stirling_factor = $target * $F->log($target) - $target + 0.5 * $F->log(2 * $target * 3.1415926); + $stirling_factor *= ($target > 1); + $loss += $stirling_factor; + } + $loss = __PACKAGE__->_apply_weighting($F, $loss, $self->weight, $sample_weight); + } + return $F->mean($loss); +} + +__PACKAGE__->register('AI::MXNet::Gluon::Loss'); + +package AI::MXNet::Gluon::CosineEmbeddingLoss; +use AI::MXNet::Gluon::Mouse; +extends 'AI::MXNet::Gluon::Loss'; +has 'margin' => (is => 'rw', isa => 'Num', default => 0); + +=head1 NAME + + AI::MXNet::Gluon::CosineEmbeddingLoss +=cut + +=head1 DESCRIPTION + + For a target label 1 or -1, vectors input1 and input2, the function computes the cosine distance + between the vectors. This can be interpreted as how similar/dissimilar two input vectors are. + + .. math:: + + L = \sum_i \begin{cases} 1 - {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = 1\\ + {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = -1 \end{cases}\\ + cos\_sim(input1, input2) = \frac{{input1}_i.{input2}_i}{||{input1}_i||.||{input2}_i||} + + `input1`, `input2` can have arbitrary shape as long as they have the same number of elements. + + Parameters + ---------- + weight : float or None + Global scalar weight for loss. + batch_axis : int, default 0 + The axis that represents mini-batch. + margin : float + Margin of separation between correct and incorrect pair. + + + Inputs: + - **input1**: a tensor with arbitrary shape + - **input2**: another tensor with same shape as pred to which input1 is + compared for similarity and loss calculation + - **label**: A 1-D tensor indicating for each pair input1 and input2, target label is 1 or -1 + - **sample_weight**: element-wise weighting tensor. Must be broadcastable + to the same shape as input1. For example, if input1 has shape (64, 10) + and you want to weigh each sample in the batch separately, + sample_weight should have shape (64, 1). + + Outputs: + - **loss**: The loss tensor with shape (batch_size,). +=cut + +method hybrid_forward( + GluonClass $F, GluonInput $input1, GluonInput $input2, GluonInput $label, Maybe[GluonInput] $sample_weight= +) +{ + $input1 = __PACKAGE__->_reshape_like($F, $input1, $input2); + $label = $label->reshape([-1, 1]); + my $cos_sim = $self->_cosine_similarity($F, $input1, $input2); + my $y_1 = $label == 1; + my $y_minus_1 = $label == -1; + my $cos_sim_a = (1 - $cos_sim) * $y_1; + + my $z_array; + if($F eq 'AI::MXNet::NDArray') + { + $z_array = $F->array([0]); + } + else + { + $z_array = $F->zeros([1, 1]); + } + my $cos_sim_b = $F->broadcast_maximum($z_array, $y_minus_1 * ($cos_sim - $self->margin), { axis=>1 }); + my $loss = $cos_sim_a + $cos_sim_b; + $loss = __PACKAGE__->_apply_weighting($F, $loss, $self->weight, $sample_weight); + return $loss; +} + +method _cosine_similarity($F, $x, $y, $axis=-1) +{ + my $x_norm = $F->norm($x, axis=>$axis)->reshape([-1, 1]); + my $y_norm = $F->norm($y, axis=>$axis)->reshape([-1, 1]); + my $x_dot_y = $F->sum($x*$y, axis=>$axis)->reshape([-1, 1]); + my $eps_arr; + if($F eq 'AI::MXNet::NDArray') + { + $eps_arr = $F->array([1e-12]); + } + else + { + $eps_arr = $F->full([1, 1], 1e-12); + } + return ($x_dot_y / $F->broadcast_maximum($x_norm * $y_norm, $eps_arr)); +} + +__PACKAGE__->register('AI::MXNet::Gluon::Loss'); + 1; \ No newline at end of file diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Cell.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Cell.pm index c14b792e77d7..89493c7b8bfb 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Cell.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Cell.pm @@ -57,6 +57,7 @@ method _get_begin_state(GluonClass $F, $begin_state, GluonInput $inputs, $batch_ return $begin_state; } + method _format_sequence($length, $inputs, $layout, $merge, $in_layout=) { assert( @@ -118,7 +119,7 @@ method _format_sequence($length, $inputs, $layout, $merge, $in_layout=) if($merge) { $inputs = [map { $F->expand_dims($_, axis => $axis) } @{ $inputs }]; - $inputs = $F->concat(@{ $inputs }, dim => $axis); + $inputs = $F->stack(@{ $inputs }, axis => $axis); $in_axis = $axis; } } @@ -129,6 +130,54 @@ method _format_sequence($length, $inputs, $layout, $merge, $in_layout=) return ($inputs, $axis, $F, $batch_size); } +method _mask_sequence_variable_length($F, $data, $length, $valid_length, $time_axis, $merge) +{ + assert(defined $valid_length); + if(not blessed $data) + { + $data = $F->stack(@$data, axis=>$time_axis); + } + my $outputs = $F->SequenceMask($data, { sequence_length=>$valid_length, use_sequence_length=>1, + axis=>$time_axis}); + if(not $merge) + { + $outputs = $F->split($outputs, { num_outputs=>$length, axis=>$time_axis, + squeeze_axis=>1}); + if(not ref $outputs eq 'ARRAY') + { + $outputs = [$outputs]; + } + } + return $outputs; +} + +method _reverse_sequences($sequences, $unroll_step, $valid_length=) +{ + my $F; + if($sequences->[0]->isa('AI::MXNet::Symbol')) + { + $F = 'AI::MXNet::Symbol'; + } + else + { + $F = 'AI::MXNet::NDArray'; + } + + my $reversed_sequences; + if(not defined $valid_length) + { + $reversed_sequences = [reverse(@$sequences)]; + } + else + { + $reversed_sequences = $F->SequenceReverse($F->stack(@$sequences, axis=>0), + {sequence_length=>$valid_length, + use_sequence_length=>1}); + $reversed_sequences = $F->split($reversed_sequences, {axis=>0, num_outputs=>$unroll_step, squeeze_axis=>1}); + } + return $reversed_sequences; +} + =head1 NAME AI::MXNet::Gluon::RNN::RecurrentCell @@ -280,21 +329,39 @@ method unroll( Maybe[GluonInput] $inputs, Maybe[GluonInput] :$begin_state=, Str :$layout='NTC', - Maybe[Bool] :$merge_outputs= + Maybe[Bool] :$merge_outputs=, + Maybe[Bool] :$valid_length= ) { $self->reset(); - my ($F, $batch_size); - ($inputs, undef, $F, $batch_size) = $self->_format_sequence($length, $inputs, $layout, 0); + my ($F, $batch_size, $axis); + ($inputs, $axis, $F, $batch_size) = $self->_format_sequence($length, $inputs, $layout, 0); $begin_state //= $self->_get_begin_state($F, $begin_state, $inputs, $batch_size); my $states = $begin_state; my $outputs = []; + my $all_states = []; for my $i (0..$length-1) { my $output; ($output, $states) = $self->($inputs->[$i], $states); push @$outputs, $output; + if(defined $valid_length) + { + push @$all_states, $states; + } + } + if(defined $valid_length) + { + $states = []; + for(zip(@$all_states)) + { + push @$states, $F->SequenceLast($F->stack(@$_, axis=>0), + sequence_length=>$valid_length, + use_sequence_length=>1, + axis=>0); + } + $outputs = $self->_mask_sequence_variable_length($F, $outputs, $length, $valid_length, $axis, 1); } ($outputs) = $self->_format_sequence($length, $outputs, $layout, $merge_outputs); return ($outputs, $states); @@ -304,8 +371,17 @@ method _get_activation(GluonClass $F, GluonInput $inputs, Activation $activation { if(not blessed $activation) { + my %act = map { $_ => 1 } qw(tanh relu sigmoid softsign); + if(exists $act{$activation}) + { + return $F->$activation($inputs, %kwargs) + } return $F->Activation($inputs, act_type=>$activation, %kwargs); } + elsif(ref($activation) =~ /LeakyReLU/) + { + return $F->LeakyReLU($inputs, act_type=>'leaky', slope => $activation->alpha, %kwargs); + } else { return $activation->($inputs, %kwargs); @@ -430,7 +506,7 @@ has [qw/ method python_constructor_arguments() { [qw/ - hidden_size activation + hidden_size activation i2h_weight_initializer h2h_weight_initializer i2h_bias_initializer h2h_bias_initializer input_size @@ -476,16 +552,17 @@ method hybrid_forward( { my $prefix = "t${\ $self->counter}_"; my $i2h = $F->FullyConnected( - $inputs, $i2h_weight, $i2h_bias, + data => $inputs, weight => $i2h_weight, bias => $i2h_bias, num_hidden => $self->hidden_size, name => "${prefix}i2h" ); my $h2h = $F->FullyConnected( - $states->[0], $h2h_weight, $h2h_bias, + data => $states->[0], weight => $h2h_weight, bias => $h2h_bias, num_hidden => $self->hidden_size, name => "${prefix}h2h" ); - my $output = $self->_get_activation($F, $i2h + $h2h, $self->activation, name => "${prefix}out"); + my $i2h_plus_h2h = $F->elemwise_add($i2h, $h2h, name => "${prefix}plus0"); + my $output = $self->_get_activation($F, $i2h_plus_h2h, $self->activation, name => "${prefix}out"); return ($output, [$output]); } @@ -555,6 +632,7 @@ method python_constructor_arguments() /]; } + sub BUILD { my $self = shift; @@ -606,14 +684,18 @@ method hybrid_forward( num_hidden => $self->hidden_size*4, name => "${prefix}h2h" ); - my $gates = $i2h + $h2h; + my $gates = $F->elemwise_add($i2h, $h2h, name => "${prefix}plus0"); my @slice_gates = @{ $F->SliceChannel($gates, num_outputs => 4, name => "${prefix}slice") }; my $in_gate = $F->Activation($slice_gates[0], act_type=>"sigmoid", name => "${prefix}i"); my $forget_gate = $F->Activation($slice_gates[1], act_type=>"sigmoid", name => "${prefix}f"); my $in_transform = $F->Activation($slice_gates[2], act_type=>"tanh", name => "${prefix}c"); my $out_gate = $F->Activation($slice_gates[3], act_type=>"sigmoid", name => "${prefix}o"); - my $next_c = $F->_plus($forget_gate * $states->[1], $in_gate * $in_transform, name => "${prefix}state"); - my $next_h = $F->_mul($out_gate, $F->Activation($next_c, act_type=>"tanh"), name => "${prefix}out"); + my $next_c = $F->_plus( + $F->elemwise_mul($forget_gate, $states->[1], name => "${prefix}mul0"), + $F->elemwise_mul($in_gate, $in_transform, name => "${prefix}mul1"), + name => "${prefix}state" + ); + my $next_h = $F->_mul($out_gate, $F->Activation($next_c, act_type=>"tanh", name => "${prefix}activation0"), name => "${prefix}out"); return ($next_h, [$next_h, $next_c]); } @@ -735,10 +817,29 @@ method hybrid_forward( my ($i2h_r, $i2h_z, $h2h_r, $h2h_z); ($i2h_r, $i2h_z, $i2h) = @{ $F->SliceChannel($i2h, num_outputs => 3, name => "${prefix}i2h_slice") }; ($h2h_r, $h2h_z, $h2h) = @{ $F->SliceChannel($h2h, num_outputs => 3, name => "${prefix}h2h_slice") }; - my $reset_gate = $F->Activation($i2h_r + $h2h_r, act_type=>"sigmoid", name => "${prefix}r_act"); - my $update_gate = $F->Activation($i2h_z + $h2h_z, act_type=>"sigmoid", name => "${prefix}z_act"); - my $next_h_tmp = $F->Activation($i2h + $reset_gate * $h2h, act_type => "tanh", name => "${prefix}h_act"); - my $next_h = $F->_plus((1 - $update_gate) * $next_h_tmp, $update_gate * $prev_state_h, name => "${prefix}out"); + my $reset_gate = $F->Activation($F->elemwise_add($i2h_r, $h2h_r, name => "${prefix}plus0"), act_type=>"sigmoid", name => "${prefix}r_act"); + my $update_gate = $F->Activation($F->elemwise_add($i2h_z, $h2h_z, name => "${prefix}plus1"), act_type=>"sigmoid", name => "${prefix}z_act"); + my $next_h_tmp = $F->Activation( + $F->elemwise_add( + $i2h, + $F->elemwise_mul( + $reset_gate, $h2h, name => "${prefix}mul0" + ), + name => "${prefix}plus2" + ), + act_type => "tanh", + name => "${prefix}h_act" + ); + my $ones = $F->ones_like($update_gate, name => "${prefix}ones_like0"); + my $next_h = $F->_plus( + $F->elemwise_mul( + $F->elemwise_sub($ones, $update_gate, name => "${prefix}minus0"), + $next_h_tmp, + name => "${prefix}mul1" + ), + $F->elemwise_mul($update_gate, $prev_state_h, name => "${prefix}mul2"), + name => "${prefix}out" + ); return ($next_h, [$next_h]); } diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Layer.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Layer.pm index 2b6e8a5bdae4..08212ab20f6d 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Layer.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Gluon/RNN/Layer.pm @@ -21,7 +21,7 @@ package AI::MXNet::Gluon::RNN::Layer; use AI::MXNet::Function::Parameters; use AI::MXNet::Gluon::Mouse; use AI::MXNet::Base; -extends 'AI::MXNet::Gluon::Block'; +extends 'AI::MXNet::Gluon::HybridBlock'; has 'hidden_size' => (is => 'rw', isa => 'Int'); has 'num_layers' => (is => 'rw', isa => 'Int'); @@ -29,18 +29,19 @@ has 'layout' => (is => 'rw', isa => 'Str'); has 'dropout' => (is => 'rw', isa => 'Num'); has 'bidirectional' => (is => 'rw', isa => 'Bool'); has 'input_size' => (is => 'rw', isa => 'Int', default => 0); +has 'projection_size' => (is => 'rw', isa => 'Maybe[Int]'); +has [qw/lstm_state_clip_min + lstm_state_clip_max/] => (is => 'rw', isa => 'Maybe[Num]'); +has 'lstm_state_clip_nan' => (is => 'rw', isa => 'Bool', default => 0); has [qw/ i2h_weight_initializer h2h_weight_initializer i2h_bias_initializer h2h_bias_initializer + h2r_weight_initializer /] => (is => 'rw', isa => 'Maybe[Initializer]'); has 'mode' => (is => 'rw', isa => 'Str'); has [qw/dir gates - i2h_weight - h2h_weight - i2h_bias - h2h_bias unfused/] => (is => 'rw', init_arg => undef); method python_constructor_arguments() @@ -50,7 +51,8 @@ method python_constructor_arguments() dropout bidirectional input_size i2h_weight_initializer h2h_weight_initializer i2h_bias_initializer h2h_bias_initializer - mode + mode projection_size h2r_weight_initializer + lstm_state_clip_min lstm_state_clip_max lstm_state_clip_nan /]; } @@ -61,41 +63,76 @@ sub BUILD ($self->layout eq 'TNC' or $self->layout eq 'NTC'), "Invalid layout [${\ $self->layout }]; must be one of ['TNC' or 'NTC']" ); - $self->i2h_weight([]); - $self->h2h_weight([]); - $self->i2h_bias([]); - $self->h2h_bias([]); $self->dir($self->bidirectional ? 2 : 1); $self->gates({qw/rnn_relu 1 rnn_tanh 1 lstm 4 gru 3/}->{$self->mode}); my ($ng, $ni, $nh) = ($self->gates, $self->input_size, $self->hidden_size); - for my $i (0..$self->num_layers-1) + if(not $self->projection_size) { - for my $j ($self->dir == 2 ? ('l', 'r') : ('l')) + for my $i (0..$self->num_layers-1) { - push @{ $self->i2h_weight }, $self->params->get( - "$j${i}_i2h_weight", shape=>[$ng*$nh, $ni], - init => $self->i2h_weight_initializer, - allow_deferred_init => 1 - ); - push @{ $self->h2h_weight }, $self->params->get( - "$j${i}_h2h_weight", shape=>[$ng*$nh, $nh], - init => $self->h2h_weight_initializer, - allow_deferred_init => 1 - ); - push @{ $self->i2h_bias }, $self->params->get( - "$j${i}_i2h_bias", shape=>[$ng*$nh], - init => $self->i2h_bias_initializer, - allow_deferred_init => 1 - ); - push @{ $self->h2h_bias }, $self->params->get( - "$j${i}_h2h_bias", shape=>[$ng*$nh], - init => $self->h2h_bias_initializer, - allow_deferred_init => 1 - ); + for my $j ($self->dir == 2 ? ('l', 'r') : ('l')) + { + $self->_register_param( + "$j${i}_i2h_weight", [$ng*$nh, $ni], + $self->i2h_weight_initializer + ); + $self->_register_param( + "$j${i}_h2h_weight", [$ng*$nh, $nh], + $self->h2h_weight_initializer + ); + $self->_register_param( + "$j${i}_i2h_bias", [$ng*$nh], + $self->i2h_bias_initializer, + ); + $self->_register_param( + "$j${i}_h2h_bias", [$ng*$nh], + $self->h2h_bias_initializer, + ); + } + $ni = $nh * $self->dir; + } + } + else + { + my $np = $self->projection_size; + for my $i (0..$self->num_layers-1) + { + for my $j ($self->dir == 2 ? ('l', 'r') : ('l')) + { + $self->_register_param( + "$j${i}_i2h_weight", [$ng*$nh, $ni], + $self->i2h_weight_initializer + ); + $self->_register_param( + "$j${i}_h2h_weight", [$ng*$nh, $np], + $self->h2h_weight_initializer + ); + $self->_register_param( + "$j${i}_i2h_bias", [$ng*$nh], + $self->i2h_bias_initializer, + ); + $self->_register_param( + "$j${i}_h2h_bias", [$ng*$nh], + $self->h2h_bias_initializer, + ); + $self->_register_param( + "$j${i}_h2r_weight", [$np, $nh], + $self->h2r_weight_initializer, + ); + } + $ni = $np * $self->dir; } - $ni = $nh * $self->dir; } - $self->unfused($self->_unfuse()); +} + +method _register_param($name, $shape, $init) +{ + my $p = $self->params->get( + $name, shape=>$shape, init=>$init, + allow_deferred_init=>1 + ); + $self->$name($p); + return $p; } use overload '""' => sub { @@ -119,15 +156,55 @@ use overload '""' => sub { return $s; }; +method _collect_params_with_prefix(Str $prefix='') +{ + $prefix .= '.' if($prefix); + my $pattern = qr/(l|r)(\d+)_(i2h|h2h)_(weight|bias)$/; + my $convert_key = sub { my ($m, $bidirectional) = @_; + my ($d, $l, $g, $t) = @$m; + if($bidirectional) + { + return "_unfused.$l.${d}_cell.${g}_$t"; + } + else + { + return "_unfused.$l.${g}_$t"; + } + }; + my $bidirectional = 0; + my %params = %{ $self->_reg_params }; + for my $k (keys %params) + { + $k =~ $pattern; + $bidirectional = 1 if $1 and $1 eq 'r'; + } + my %ret; + for my $k (keys %params) + { + $k =~ $pattern; + $ret{ $prefix . $convert_key->([$1, $2, $3, $4], $bidirectional) } = $params{$k}; + } + my $iter = $self->_children->iterator; + while(my ($name, $child) = $iter->()) + { + %ret = (%ret, %{ $child->_collect_params_with_prefix("$prefix$name") }); + } + return \%ret; +} + method state_info($batch_size=0) { confess('NotImplementedError'); } -# Unfuses the fused RNN in to a stack of rnn cells. method _unfuse() { + assert((not $self->projection_size), "_unfuse does not support projection layer yet!"); + assert( + (not $self->lstm_state_clip_min and not $self->lstm_state_clip_max), + "_unfuse does not support state clipping yet!" + ); my $get_cell = { rnn_relu => sub { my %kwargs = @_; @@ -218,89 +295,105 @@ method begin_state( } use Data::Dumper; -method forward(GluonInput $inputs, Maybe[GluonInput] $states=) +method hybrid_forward(GluonClass $F, GluonInput $inputs, @args) { - my $batch_size = $inputs->shape->[index($self->layout, 'N')]; - my $skip_states = not defined $states; - if($skip_states) + my $states; + if(@args) { - $states = $self->begin_state($batch_size, ctx=>$inputs->context); + if(not defined $args[0] or ref $args[0]) + { + $states = shift(@args); + undef $states if(ref $states eq 'ARRAY' and not @$states); + } } - if(blessed $states and $states->isa('AI::MXNet::NDArray')) + use Data::Dumper; + + my $batch_size; + if($F eq 'AI::MXNet::NDArray') { - $states = [$states]; + $batch_size = $inputs->shape->[index($self->layout, 'N')]; } - for(zip($states, $self->state_info($batch_size))) { - my ($state, $info) = @$_; - if(Dumper($state->shape) ne Dumper($info->{shape})) + my $skip_states = not defined $states; + if($skip_states) + { + if($F eq 'AI::MXNet::NDArray') { - my @state_shape = @{ $state->shape }; - confess("Invalid recurrent state shape. Expecting @{$info->{shape}}, got @state_shape."); + $states = $self->begin_state($batch_size, ctx=>$inputs->context, dtype=>$inputs->dtype); } - } - if($self->input_size == 0) - { - for my $i (0..$self->dir-1) + else { - $self->i2h_weight->[$i]->shape([$self->gates*$self->hidden_size, $inputs->shape->[2]]); - $self->i2h_weight->[$i]->_finish_deferred_init(); + $states = $self->begin_state(0, func=>sub { return AI::MXNet::Symbol->zeros(@_) }); } } - my $out; - if($inputs->context->device_type eq 'gpu') + if(blessed $states and ($states->isa('AI::MXNet::NDArray') or $states->isa('AI::MXNet::Symbol'))) { - $out = $self->_forward_gpu($inputs, $states); + $states = [$states]; } - else + if($F eq 'AI::MXNet::NDArray') { - $out = $self->_forward_cpu($inputs, $states); + for(zip($states, $self->state_info($batch_size))) + { + my ($state, $info) = @$_; + if(Dumper($state->shape) ne Dumper($info->{shape})) + { + my @state_shape = @{ $state->shape }; + confess("Invalid recurrent state shape. Expecting @{$info->{shape}}, got @state_shape."); + } + } } - - # out is (output, state) + my $out = $self->_forward_kernel($F, $inputs, $states, @args); return $skip_states ? $out->[0] : $out; } -method _forward_cpu($inputs, $states) +method _forward_kernel($F, $inputs, $states, %kwargs) { - my $ns = @{ $states }; - my $axis = index($self->layout, 'T'); - $states = [map { @{$_} } @{ $states }]; - my $outputs; - ($outputs, $states) = $self->unfused->unroll( - $inputs->shape->[$axis], $inputs, begin_state => $states, - layout => $self->layout, merge_outputs => 1 - ); - my @new_states; - for my $i (0..$ns-1) + if($self->layout eq 'NTC') { - my @tmp; - for (my $j = $i; $j < @{ $states }; $j += $ns) + $inputs = $F->swapaxes($inputs, dim1=>0, dim2=>1); + } + my @params; + if(not defined $self->projection_size) + { + for my $t ('weight', 'bias') { - push @tmp, $states->[$j]; + for my $l (0..$self->num_layers-1) + { + for my $d ($self->dir == 2 ? ('l', 'r') : ('l')) + { + for my $g ('i2h', 'h2h') + { + push @params, $kwargs{"$d${l}_${g}_$t"}->reshape([-1]); + } + } + } } - my $state = AI::MXNet::NDArray->concat((map { $_->reshape([1, @{ $_->shape }]) } @tmp), dim => 0); - push @new_states, $state; } - return [$outputs, \@new_states]; -} - -method _forward_gpu($inputs, $states) -{ - if($self->layout eq 'NTC') + else { - $inputs = $inputs->swapaxes(dim1 => 0, dim2 => 1); + for my $t ('weight', 'bias') + { + for my $l (0..$self->num_layers-1) + { + for my $d ($self->dir == 2 ? ('l', 'r') : ('l')) + { + for my $g ('i2h', 'h2h', 'h2r') + { + push @params, $kwargs{"$d${l}_${g}_$t"}->reshape([-1]) + unless($g eq 'h2r' and $t eq 'bias'); + } + } + } + } } - my $ctx = $inputs->context; - my @params = map { $_->data($ctx)->reshape([-1]) } map { @{ $_ } } ( - $self->i2h_weight, $self->h2h_weight, - $self->i2h_bias, $self->h2h_bias - ); - my $params = AI::MXNet::NDArray->concat(@params, dim => 0); - my $rnn = AI::MXNet::NDArray->RNN( - $inputs, $params, @{ $states }, state_size => $self->hidden_size, + my $params = $F->_rnn_param_concat(@params, dim=>0); + my $rnn = $F->RNN( + $inputs, $params, @{ $states }, { state_size => $self->hidden_size, num_layers => $self->num_layers, bidirectional => $self->dir == 2 ? 1 : 0, - p => $self->dropout, state_outputs => 1, mode => $self->mode - ); + p => $self->dropout, state_outputs => 1, mode => $self->mode, + (defined $self->lstm_state_clip_min ? (lstm_state_clip_min=>$self->lstm_state_clip_min) : ()), + (defined $self->lstm_state_clip_max ? (lstm_state_clip_max=>$self->lstm_state_clip_max) : ()), + (defined $self->lstm_state_clip_nan ? (lstm_state_clip_nan=>$self->lstm_state_clip_nan) : ()) + }); my $outputs; my @rnn = @{$rnn}; if($self->mode eq 'lstm') @@ -318,7 +411,6 @@ method _forward_gpu($inputs, $states) return [$outputs, $states]; } - package AI::MXNet::Gluon::RNN::RNN; =head1 NAME @@ -552,7 +644,10 @@ method state_info(DimSize $batch_size=0) { return [ { - shape => [$self->num_layers * $self->dir, $batch_size, $self->hidden_size], + shape => [ + $self->num_layers * $self->dir, $batch_size, + defined $self->projection_size ? $self->projection_size : $self->hidden_size + ], __layout__ => 'LNC' }, { diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Initializer.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Initializer.pm index 0359cc3640d4..75c8b1e3dad1 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Initializer.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Initializer.pm @@ -191,6 +191,16 @@ method call(Str|AI::MXNet::InitDesc $desc, AI::MXNet::NDArray $arr) $self->$method($desc, $arr); $self->_verbose_print($desc, $1, $arr); } + elsif($desc =~ /min$/) + { + $self->_init_zero($desc, $arr); + $self->_verbose_print($desc, 'min', $arr); + } + elsif($desc =~ /max$/) + { + $self->_init_one($desc, $arr); + $self->_verbose_print($desc, 'max', $arr); + } else { $self->_init_default($desc, $arr) @@ -250,6 +260,14 @@ method _legacy_init(Str $name, AI::MXNet::NDArray $arr) { $self->_init_zero($name, $arr); } + elsif($name =~ /min$/) + { + $self->_init_zero($name, $arr); + } + elsif($name =~ /max$/) + { + $self->_init_one($name, $arr); + } else { $self->_init_default($name, $arr); diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/NDArray.pm b/perl-package/AI-MXNet/lib/AI/MXNet/NDArray.pm index 3a7b6bab2e2c..72f6cc772178 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/NDArray.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/NDArray.pm @@ -1226,6 +1226,9 @@ method concatenate(ArrayRef[AI::MXNet::NDArray] $arrays, Index :$axis=0, :$alway :$repeat=1 : number, optional The repeating time of all elements. E.g repeat=3, the element a will be repeated three times --> a, a, a. + :$infer_range=0 : Bool + When set to 1, infer stop position from start, step, repeat, and + output tensor size. :$ctx : Context, optional The context of the NDArray, defaultw to current default context. :$dtype : data type, optional @@ -1237,7 +1240,7 @@ method concatenate(ArrayRef[AI::MXNet::NDArray] $arrays, Index :$axis=0, :$alway The created NDArray =cut -method arange(Index :$start=0, Maybe[Index] :$stop=, Index :$step=1, Index :$repeat=1, +method arange(Index :$start=0, Maybe[Index] :$stop=, Index :$step=1, Index :$repeat=1, Bool :$infer_range=0, AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx, Dtype :$dtype='float32') { return __PACKAGE__->_arange({ @@ -1246,6 +1249,7 @@ method arange(Index :$start=0, Maybe[Index] :$stop=, Index :$step=1, Index :$rep step => $step, repeat => $repeat, dtype => $dtype, + infer_range => $infer_range, ctx => "$ctx" }); } diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Symbol.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Symbol.pm index 57bfdf1d977c..04dd1cbfc441 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Symbol.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Symbol.pm @@ -1411,16 +1411,19 @@ method ones(Shape :$shape, Dtype :$dtype='float32', Maybe[Str] :$name=, Maybe[St Parameters ---------- - start : number + :$start=0 : number Start of interval. The interval includes this value. The default start value is 0. - stop : number, optional + :$stop= : number, optional End of interval. The interval does not include this value. - step : number, optional + :$step=1.0 : number, optional Spacing between values - repeat : int, optional + :$repeat=1 : int, optional "The repeating time of all elements. E.g repeat=3, the element a will be repeated three times --> a, a, a. - dtype : type, optional + :$infer_range=0 : Bool + When set to 1, infer stop position from start, step, repeat, and + output tensor size. + :$dtype='float32' : type, optional The value type of the NDArray, default to np.float32 Returns @@ -1429,11 +1432,12 @@ method ones(Shape :$shape, Dtype :$dtype='float32', Maybe[Str] :$name=, Maybe[St The created Symbol =cut -method arange(Index :$start=0, Index :$stop=, Num :$step=1.0, Index :$repeat=1, Maybe[Str] :$name=, Dtype :$dtype='float32') +method arange(Index :$start=0, Index :$stop=, Num :$step=1.0, Index :$repeat=1, Bool :$infer_range=0, Maybe[Str] :$name=, Dtype :$dtype='float32') { return __PACKAGE__->_arange({ start => $start, (defined $stop ? (stop => $stop) : ()), - step => $step, repeat => $repeat, name => $name, dtype => $dtype + step => $step, repeat => $repeat, name => $name, dtype => $dtype, + infer_range => $infer_range }); } diff --git a/perl-package/AI-MXNet/lib/AI/MXNet/Visualization.pm b/perl-package/AI-MXNet/lib/AI/MXNet/Visualization.pm index 20811f10fedf..1574ea58307f 100644 --- a/perl-package/AI-MXNet/lib/AI/MXNet/Visualization.pm +++ b/perl-package/AI-MXNet/lib/AI/MXNet/Visualization.pm @@ -172,6 +172,10 @@ method print_summary( $cur_param = $num_filter * 2; } } + elsif($op eq 'Embedding') + { + $cur_param = $node->{attrs}{input_dim} * $node->{attrs}{output_dim}; + } my $first_connection; if(not $pre_node) { diff --git a/perl-package/AI-MXNet/t/test_gluon_rnn.t b/perl-package/AI-MXNet/t/test_gluon_rnn.t index 83b294d110ce..51e6ad53e171 100644 --- a/perl-package/AI-MXNet/t/test_gluon_rnn.t +++ b/perl-package/AI-MXNet/t/test_gluon_rnn.t @@ -14,6 +14,7 @@ # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. + use strict; use warnings; use Test::More tests => 77; @@ -276,14 +277,15 @@ sub check_rnn_layer_forward $inputs->attach_grad; my $out; mx->autograd->record(sub { - $out = $layer->($inputs, $states); if(defined $states) { + $out = $layer->($inputs, $states); ok(@$out == 2); $out = $out->[0]; } else { + $out = $layer->($inputs); ok(blessed $out and $out->isa('AI::MXNet::NDArray')); } $out->backward(); @@ -292,21 +294,19 @@ sub check_rnn_layer_forward my $pdl_out = $out->aspdl; my $pdl_dx = $inputs->grad->aspdl; $layer->hybridize; - mx->autograd->record(sub { - $out = $layer->($inputs, $states); if(defined $states) { - ok(@$out == 2); - $out = $out->[0] + ($out, $states) = $layer->($inputs, $states); + ok(blessed $out and $out->isa('AI::MXNet::NDArray')); } else { + $out = $layer->($inputs, $states); ok(blessed $out and $out->isa('AI::MXNet::NDArray')); } $out->backward(); }); - ok(almost_equal($pdl_out, $out->aspdl, 1e-3)); ok(almost_equal($pdl_dx, $inputs->grad->aspdl, 1e-3)); } @@ -314,21 +314,12 @@ sub check_rnn_layer_forward sub test_rnn_layers { check_rnn_layer_forward(gluon->rnn->RNN(10, 2), mx->nd->ones([8, 3, 20])); - check_rnn_layer_forward(gluon->rnn->RNN(10, 2), mx->nd->ones([8, 3, 20]), mx->nd->ones([2, 3, 10])); + check_rnn_layer_forward(gluon->rnn->RNN(10, 2, bidirectional=>1), mx->nd->ones([8, 3, 20]), mx->nd->ones([4, 3, 10])); check_rnn_layer_forward(gluon->rnn->LSTM(10, 2), mx->nd->ones([8, 3, 20])); - check_rnn_layer_forward(gluon->rnn->LSTM(10, 2), mx->nd->ones([8, 3, 20]), [mx->nd->ones([2, 3, 10]), mx->nd->ones([2, 3, 10])]); + check_rnn_layer_forward(gluon->rnn->LSTM(10, 2, bidirectional=>1), mx->nd->ones([8, 3, 20]), [mx->nd->ones([4, 3, 10]), mx->nd->ones([4, 3, 10])]); check_rnn_layer_forward(gluon->rnn->GRU(10, 2), mx->nd->ones([8, 3, 20])); - check_rnn_layer_forward(gluon->rnn->GRU(10, 2), mx->nd->ones([8, 3, 20]), mx->nd->ones([2, 3, 10])); - -# my $net = gluon->nn->Sequential(); -# $net->add(gluon->rnn->LSTM(10, 2, bidirectional=>1)); -# $net->add(gluon->nn->BatchNorm(axis=>2)); -# $net->add(gluon->nn->Flatten()); -# $net->add(gluon->nn->Dense(3, activation=>'relu')); -# $net->collect_params()->initialize(); -# mx->autograd->record(sub { -# $net->(mx->nd->ones([2, 3, 10]))->backward(); -# }); + check_rnn_layer_forward(gluon->rnn->GRU(10, 2, bidirectional=>1), mx->nd->ones([8, 3, 20]), mx->nd->ones([4, 3, 10])); } test_rnn_layers(); + diff --git a/perl-package/AI-MXNet/t/test_loss.t b/perl-package/AI-MXNet/t/test_loss.t index 7fc7ee81d0de..5a9e413bbfaf 100644 --- a/perl-package/AI-MXNet/t/test_loss.t +++ b/perl-package/AI-MXNet/t/test_loss.t @@ -17,7 +17,7 @@ use strict; use warnings; -use Test::More tests => 30; +use Test::More tests => 32; use AI::MXNet 'mx'; use AI::MXNet::Gluon 'gluon'; use AI::MXNet::TestUtils 'almost_equal'; @@ -435,3 +435,47 @@ sub test_triplet_loss test_triplet_loss(); +sub test_cosine_loss +{ + my $input1 = mx->nd->random->randn(3, 2); + my $input2 = mx->nd->random->randn(3, 2); + my $label = mx->nd->sign(mx->nd->random->randn($input1->shape->[0])); + + my $Loss = gluon->loss->CosineEmbeddingLoss(); + my $loss = $Loss->($input1, $input2, $label); + + my $numerator = mx->nd->sum($input1 * $input2, keepdims => 1, axis => 1); + my $denominator = mx->nd->sqrt(mx->nd->sum($input1**2, axis=>1, keepdims=>1)) + * + mx->nd->sqrt(mx->nd->sum($input2**2, axis=>1, keepdims=>1)); + my $pdl_loss = mx->nd->where( + ($label == 1), 1-$numerator/$denominator, + mx->nd->broadcast_maximum(mx->nd->array([0]), $numerator/$denominator, { axis=>1 }) + ); + ok(almost_equal($loss->aspdl, $pdl_loss->aspdl)); +} + +test_cosine_loss(); + +sub test_poisson_nllloss +{ + my $N = 1000; + mx->random->seed(1234); + srand(1234); + my $data = mx->random->poisson(shape=>[$N, 2]); + my $label = mx->random->poisson(lam=>4, shape=>[$N, 1]); + my $data_iter = mx->io->NDArrayIter($data, $label, batch_size=>20, label_name=>'label', shuffle=>1); + my $output = mx->sym->exp(get_net(1)); + my $l = mx->symbol->Variable('label'); + my $Loss = gluon->loss->PoissonNLLLoss(from_logits=>0); + my $loss = $Loss->($output, $l); + $loss = mx->sym->make_loss($loss); + my $mod = mx->mod->Module($loss, data_names=>['data'], label_names=>['label']); + local($AI::MXNet::Logging::silent) = 1; + $mod->fit($data_iter, num_epoch=>20, optimizer_params=>{learning_rate => 0.01}, + initializer=>mx->init->Normal(sigma=>0.1), eval_metric=>mx->metric->Loss(), + optimizer=>'adam'); + ok($mod->score($data_iter, mx->metric->Loss())->{loss} < 0.05); +} + +test_poisson_nllloss; diff --git a/perl-package/AI-MXNetCAPI/Changes b/perl-package/AI-MXNetCAPI/Changes index 08ad085abce9..cdbbdab57cdf 100644 --- a/perl-package/AI-MXNetCAPI/Changes +++ b/perl-package/AI-MXNetCAPI/Changes @@ -1,5 +1,8 @@ Revision history for Perl extension AI::MXNetCAPI +1.4 Mon Feb 18 11:54:07 PST 2019 + - Support for 64bit integers + 1.33 Thu Oct 4 13:25:56 PDT 2018 - Gluon: Better sparse support for KVStore. - Gpu memory info via mxnet api call. diff --git a/perl-package/AI-MXNetCAPI/META.json b/perl-package/AI-MXNetCAPI/META.json index 1849e6b3bc18..82bee1ace8f8 100644 --- a/perl-package/AI-MXNetCAPI/META.json +++ b/perl-package/AI-MXNetCAPI/META.json @@ -37,5 +37,5 @@ } }, "release_status" : "stable", - "version" : "1.33" + "version" : "1.4" } diff --git a/perl-package/AI-MXNetCAPI/META.yml b/perl-package/AI-MXNetCAPI/META.yml index d870f05fbe52..bd4af4047378 100644 --- a/perl-package/AI-MXNetCAPI/META.yml +++ b/perl-package/AI-MXNetCAPI/META.yml @@ -36,4 +36,4 @@ no_index: - inc requires: Test::More: '0' -version: '1.33' +version: '1.4' diff --git a/perl-package/AI-MXNetCAPI/README b/perl-package/AI-MXNetCAPI/README index 67b77ccd1614..848b4d03ab21 100644 --- a/perl-package/AI-MXNetCAPI/README +++ b/perl-package/AI-MXNetCAPI/README @@ -1,4 +1,4 @@ -AI-MXNetCAPI version 1.33 +AI-MXNetCAPI version 1.4 ===================== Swig interface to MXNet c api. diff --git a/perl-package/AI-MXNetCAPI/lib/AI/MXNetCAPI.pm b/perl-package/AI-MXNetCAPI/lib/AI/MXNetCAPI.pm index bc7676047d76..e3b71f8efc92 100644 --- a/perl-package/AI-MXNetCAPI/lib/AI/MXNetCAPI.pm +++ b/perl-package/AI-MXNetCAPI/lib/AI/MXNetCAPI.pm @@ -18,7 +18,7 @@ package AI::MXNetCAPI; use base qw(DynaLoader); bootstrap AI::MXNetCAPI; -our $VERSION = '1.33'; +our $VERSION = '1.4'; 1; __END__ diff --git a/perl-package/AI-MXNetCAPI/mxnet_typemaps.i b/perl-package/AI-MXNetCAPI/mxnet_typemaps.i index 68e11ca74e1a..50296c2aaba5 100644 --- a/perl-package/AI-MXNetCAPI/mxnet_typemaps.i +++ b/perl-package/AI-MXNetCAPI/mxnet_typemaps.i @@ -115,7 +115,7 @@ } } -%typemap(in,numinputs=0) (int *out) (int temp), (bool *out) (bool temp) +%typemap(in,numinputs=0) (int *out) (int temp), (bool *out) (bool temp), (uint64_t *out) (uint64_t temp) { temp = 0; $1 = &temp; @@ -131,6 +131,17 @@ } } +%typemap(argout) (uint64_t *out) +{ + if(!result) + { + $result = newSVnv((double)(*$1)); + sv_2mortal($result); + argvi++; + } +} + + %typemap(in,numinputs=0) (const int **out_stypes) (int* temp) { temp = NULL;