From 14bedee1da948df032d10d77559282d4fbe3ff32 Mon Sep 17 00:00:00 2001 From: Sandeep Krishnamurthy Date: Thu, 7 Feb 2019 13:16:13 -0800 Subject: [PATCH] Ignore operation req type for to tensor --- src/operator/image/image_random-inl.h | 15 +++++---------- 1 file changed, 5 insertions(+), 10 deletions(-) diff --git a/src/operator/image/image_random-inl.h b/src/operator/image/image_random-inl.h index dacc966cd11e..b7c3a1f54d5d 100644 --- a/src/operator/image/image_random-inl.h +++ b/src/operator/image/image_random-inl.h @@ -79,7 +79,6 @@ inline bool ToTensorType(const nnvm::NodeAttrs& attrs, // Operator Implementation -template struct totensor_forward { template MSHADOW_XINLINE static void Map(uint32_t c, float* out_data, const DType* in_data, @@ -87,8 +86,8 @@ struct totensor_forward { const float normalize_factor = 255.0f) { #pragma omp parallel for for (int i = 0; i < length; ++i) { - KERNEL_ASSIGN(out_data[step + c*length + i], req, - (in_data[step + i*channel + c]) / normalize_factor); + out_data[step + c*length + i] = + (in_data[step + i*channel + c]) / normalize_factor; } } }; @@ -97,19 +96,16 @@ template void ToTensorImpl(const OpContext &ctx, const std::vector &inputs, const std::vector &outputs, - const std::vector &req, const int length, const uint32_t channel, const int step = 0) { mshadow::Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, { - MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { float* output = outputs[0].dptr(); DType* input = inputs[0].dptr(); - mxnet_op::Kernel, xpu>::Launch( + mxnet_op::Kernel::Launch( s, channel, output, input, length, channel, step); - }); }); } @@ -121,13 +117,12 @@ void ToTensorOpForward(const nnvm::NodeAttrs &attrs, const std::vector &outputs) { CHECK_EQ(inputs.size(), 1U); CHECK_EQ(outputs.size(), 1U); - CHECK_EQ(req.size(), 1U); // 3D Input - (h, w, c) if (inputs[0].ndim() == 3) { const int length = inputs[0].shape_[0] * inputs[0].shape_[1]; const uint32_t channel = inputs[0].shape_[2]; - ToTensorImpl(ctx, inputs, outputs, req, length, channel); + ToTensorImpl(ctx, inputs, outputs, length, channel); } else if (inputs[0].ndim() == 4) { // 4D input (n, h, w, c) const int batch_size = inputs[0].shape_[0]; @@ -137,7 +132,7 @@ void ToTensorOpForward(const nnvm::NodeAttrs &attrs, #pragma omp parallel for for (auto n = 0; n < batch_size; ++n) { - ToTensorImpl(ctx, inputs, outputs, req, length, channel, n*step); + ToTensorImpl(ctx, inputs, outputs, length, channel, n*step); } } }