-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy pathfile_averaging.py
65 lines (54 loc) · 2.38 KB
/
file_averaging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2017 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict, Counter
import pickle
import pandas as pd
SUBMIT_PATH = ''
SIGFIGS = 6
def read_models(model_weights, blend=None):
if not blend:
blend = defaultdict(Counter)
for m, w in model_weights.items():
print(m, w)
with open(os.path.join(SUBMIT_PATH, m + '.csv'), 'r') as f:
f.readline()
for l in f:
id, r = l.split(',')
id, r = int(id), r.split(' ')
n = len(r) // 2
for i in range(0, n, 2):
k = int(r[i])
v = int(10**(SIGFIGS - 1) * float(r[i+1]))
blend[id][k] += w * v
return blend
def write_models(blend, file_name, total_weight):
with open(os.path.join(SUBMIT_PATH, file_name + '.csv'), 'w') as f:
f.write('VideoID,LabelConfidencePairs\n')
for id, v in blend.items():
l = ' '.join(['{} {:{}f}'.format(t[0]
, float(t[1]) / 10 ** (SIGFIGS - 1) / total_weight
, SIGFIGS) for t in v.most_common(20)])
f.write(','.join([str(id), l + '\n']))
return None
model_pred = {'test-gatednetvladLF-256k-1024-80-0002-300iter-norelu-basic-gatedmoe': 1
, 'test-GRU-0002-1200-2': 1
, 'test-gatednetfvLF-128k-1024-80-0002-300iter-norelu-basic-gatedmoe': 1
, 'test-gateddboflf-4096-1024-80-0002-300iter': 1
, 'test-softdboflf-8000-1024-80-0002-300iter': 1
, 'test-gatedlightvladLF-256k-1024-80-0002-300iter-norelu-basic-gatedmoe': 1
, 'test-lstm-0002-val-150-random': 1
}
avg = read_models(model_pred)
write_models(avg, 'WILLOW_submission', sum(model_pred.values()))