-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise_5.html
697 lines (601 loc) · 22 KB
/
exercise_5.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Exercises</title>
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/navigation-1.1/codefolding.js"></script>
<link href="site_libs/font-awesome-6.4.2/css/all.min.css" rel="stylesheet" />
<link href="site_libs/font-awesome-6.4.2/css/v4-shims.min.css" rel="stylesheet" />
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162377463-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-162377463-1');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "\e259";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "\e258";
font-family: 'Glyphicons Halflings';
border: none;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">QUADstatR</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="FAQ.html">
<span class="fa fa-question"></span>
FAQ
</a>
</li>
<li>
<a href="setup.html">
<span class="fa fa-cog"></span>
Setup
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-book"></span>
R Book
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://alexd106.github.io/Rbook">
<span class="fa fa-firefox"></span>
Web book
</a>
</li>
<li class="divider"></li>
<li>
<a href="/~https://github.com/alexd106/Rbook/raw/master/docs/Rbook.pdf">
<span class="fa fa-file-pdf"></span>
PDF book
</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-university"></span>
Learn R
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="howto.html">
<span class="fa fa-tv"></span>
How-to videos
</a>
</li>
<li class="divider"></li>
<li>
<a href="lectures.html">
<span class="fa fa-book"></span>
Lecture slides
</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-file-contract"></span>
Exercises
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="exercises.html">
<span class="fa fa-folder"></span>
Excercises
</a>
</li>
<li class="divider"></li>
<li>
<a href="exercise_solutions.html">
<span class="fa fa-folder"></span>
Exercise solutions
</a>
</li>
</ul>
</li>
<li>
<a href="data.html">
<span class="fa fa-download"></span>
Data
</a>
</li>
<li>
<a href="Tutorials.html">
<span class="fa fa-desktop"></span>
Tutorials
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-question-circle"></span>
Info
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="syllabus.html">
<span class="fa fa-graduation-cap"></span>
Syllabus
</a>
</li>
<li class="divider"></li>
<li>
<a href="People.html">
<span class="fa fa-user-friends"></span>
People
</a>
</li>
<li class="divider"></li>
<li>
<a href="resources.html">
<span class="fa fa-book"></span>
Resources
</a>
</li>
<li>
<a href="https://forms.gle/T8z1BSUUQiyJ2e8z8">
<span class="fa fa-commenting"></span>
Feedback
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://www.quadrat.ac.uk/">
<span class="fa fa-chrome"></span>
QUADRAT
</a>
</li>
<li>
<a href="https://superdtp.st-andrews.ac.uk/">
<span class="fa fa-chrome"></span>
SUPER
</a>
</li>
<li>
<a href="People.html">
<span class="fa fa-envelope fa-lg"></span>
Contact
</a>
</li>
<li>
<a href="http://github.com/alexd106">
<span class="fa fa-github fa-lg"></span>
Source code
</a>
</li>
<li>
<a href="https://twitter.com/QUADRATdtp">
<span class="fa fa-twitter fa-lg"></span>
Twitter
</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<div class="btn-group pull-right float-right">
<button type="button" class="btn btn-default btn-xs btn-secondary btn-sm dropdown-toggle" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
</ul>
</div>
<h1 class="title toc-ignore">Exercises</h1>
</div>
<p> </p>
<div id="exercise-5-basic-statistics-in-r" class="section level2">
<h2>Exercise 5: Basic statistics in R</h2>
<p> </p>
<p>Read <a href="https://intro2r.com/stats_r.html">Chapter 6</a> to help
you complete the questions in this exercise.</p>
<p> </p>
<p>Although this short course is primarily focussed on introducing you
to R, it wouldn’t be complete if we didn’t have a peek at some of R’s
statistical roots. Having said that, this will be a very brief overview
with very little in the way of theory so don’t worry if you get a little
lost - this is just a taster, the main course is still to come!</p>
<p> </p>
<p>1. Download the datafile <em>‘prawnGR.csv’</em> from the <strong><a
href="data.html"><i class="fa fa-download"></i> Data</a></strong> link
and save it to the <code>data</code> directory. Import these data into R
and assign to a variable with an appropriate name. These data were
collected from an experiment to investigate the difference in growth
rate of the <a
href="https://en.wikipedia.org/wiki/Penaeus_monodon">giant tiger
prawn</a> (<em>Penaeus monodon</em>) fed either an artificial or natural
diet. Have a quick look at the structure of this dataset and plot the
growth rate versus the diet using an appropriate plot. How many
observations are there in each diet treatment?</p>
<p> </p>
<p>2. You want to compare the difference in growth rate between the two
diets using a two sample t-test. Before you conduct the test, you need
to assess the normality and equal variance assumptions. Use the function
<code>shapiro.test()</code> to assess normality of growth rate for each
diet separately (Hint: use your indexing skills to extract the growth
rate for each diet <code>GRate[diet=='Natural']</code> first). Use the
function <code>var.test()</code> to test for equal variance (see
<code>?var.test</code> for more information or <a
href="https://intro2r.com/one-and-two-sample-tests.html#one-and-two-sample-tests">Section
6.1</a> of the book for more details). Are your data normally
distributed and have equal variances? Note: We don’t really advocate
using these ‘approaches’ for assessing the normality and equal variance
assumptions assumptions but include them here as many people will still
want to use them. A much better way to assess assumptions is to use
diagnostic plots of the residuals (see Q6 for an example).</p>
<p> </p>
<p>3. Conduct a two sample t-test using the <code>t.test()</code>
function (<a
href="https://intro2r.com/one-and-two-sample-tests.html#one-and-two-sample-tests">Section
6.1</a> of the book). Use the argument <code>var.equal = TRUE</code> to
perform the t-test assuming equal variances. What is the null hypothesis
you want to test? Do you reject or fail to reject the null hypothesis?
What is the value of the t statistic, degrees of freedom and p value?
How would you summarise these summary statistics in a report?</p>
<p> </p>
<p>4. An alternative (but equivalent) way to compare the mean growth
rate between diets is to use a linear model. Use the <code>lm()</code>
function to fit a linear model with <code>GRate</code> as the response
variable and <code>diet</code> as an explanatory variable (see <a
href="https://intro2r.com/simple_lm.html#simple_lm">Section 6.3</a> for
a very brief introduction to linear modelling). Assign
(<code><-</code>) the results of the linear model to a variable with
an appropriate name (i.e. <code>growth.lm</code>).</p>
<p> </p>
<p>5. Produce an ANOVA table for the fitted model using the
<code>anova()</code> function i.e. <code>anova(growth.lm)</code>.
Compare the ANOVA p value to the p value obtained using a t-test. What
do you notice? What is the value of the F statistics and degrees of
freedom? How would you summarise these results in a report?</p>
<p> </p>
<p>6. Assess the normality and equal variance assumptions by plotting
the residuals of the fitted model (see <a
href="https://intro2r.com/simple_lm.html#simple_lm">Section 6.3</a> for
more details). Split the plotting device into 2 rows and 2 columns using
<code>par(mfrow=c(2,2))</code> so you can fit four plots on a single
device. Use the <code>plot()</code> function on your fitted model
(<code>plot(growth.lm)</code>) to plot the graphs. Discuss with an
instructor how to interpret these plots. What are your conclusions?</p>
<p> </p>
<p>7. Download the datafile <em>‘Gigartina.csv’</em> from the <strong><a
href="data.html"><i class="fa fa-download"></i> Data</a></strong> link
and save it to the <code>data</code> directory. Import the dataset into
R and assign the dataframe an appropriate name. These data were
collected from a study to examine the change in <code>diameter</code> of
red algae <a
href="https://en.wikipedia.org/wiki/Mastocarpus_stellatus"><em>Mastocarpus
stellatus</em></a> spores grown in three different diatom cultures and a
control group grown in artificial seawater (<code>diatom.treat</code>
variable). Use the function <code>str()</code> to examine the dataframe.
How many replicates are there per diatom treatment? Use an appropriate
plot to examine whether there are any obvious differences in diameter
between the treatments.</p>
<p> </p>
<p>8. You wish to compare the mean diameter of <em>Metacarpus</em> grown
in the four treatment groups (<code>ASGM</code>, <code>Sdecl</code>,
<code>Sexpo</code>, <code>Sstat</code>) using a one-way analysis of
variance (ANOVA). What is your null hypothesis?</p>
<p> </p>
<p>9. We will conduct the ANOVA using the linear model function
<code>lm()</code> once again. Make sure you know which of the variables
is your response variable and which is your explanatory variable (ask an
instructor if in doubt). Fit the linear model and assign the model
output to a variable with an appropriate name
(i.e. <code>gigartina.lm</code>).</p>
<p> </p>
<p>10. Produce an ANOVA table using the <code>anova()</code> function.
What is the value of the p value? Do you reject or fail to reject the
null hypothesis? What is the value of the <em>F</em> statistic and
degrees of freedom? How would you report these summary statistics in a
report?</p>
<p> </p>
<p>11. Assess the assumptions of normality and equal variance of the
residuals by producing the residual plots as before. Don’t forget to
split the plotting device into 2 rows and 2 columns before plotting.
Discuss with an instructor whether the residuals meet these assumptions.
Do you accept this model as acceptable?</p>
<p> </p>
<p>12. Let’s compare the treatment group means to determine which
treatment group is different from other treatment groups. In general,
you should be careful with these types of post-hoc comparisons,
especially if you have a large number of groups (There are much better
ways to do this, but that’s for another course!). In this case we only
have 4 groups, and therefore we will use Tukey’s Honest significant
difference to perform the comparisons and control for type 1 error rate
(rejecting a true null hypothesis).</p>
<p>We will use the function <code>TukeyHSD()</code> from the
<code>mosaic</code> package to perform these comparisons (you will need
to install this package first and then use <code>library(mosaic)</code>
to make the function available). Which groups are different from each
other if we use the p-value cutoff (alpha) of p < 0.05?</p>
<p> </p>
<p>13. We can also produce a plot of the comparisons to help us
interpret the table of comparisons. Use the <code>plot()</code> function
with the <code>TukeyHSD(gigartina.lm)</code>. Ask if you get stuck (or
Google it!).</p>
<p> </p>
<p>14. Download the <em>‘TemoraBR.csv’</em> file from the <strong><a
href="data.html"><i class="fa fa-download"></i> Data</a></strong> link
and save it to the <code>data</code> directory. Import the dataset into
R and as usual assign it to a variable. These data are from an
experiment that was conducted to investigate the relationship between
temperature (<code>temp</code>) and the beat rate (Hz)
<code>beat_rate</code> of the copepod <a
href="https://en.wikipedia.org/wiki/Temora_longicornis"><em>Temora
longicornis</em></a> which had been acclimatised at three different
temperature regimes (<code>acclimitisation_temp</code>). Examine the
structure of the dataset. How many variables are there? What type of
variables are they? Which is the response (dependent) variable, and
which are the explanatory (independent) variables?</p>
<p> </p>
<p>15. What type of variable is <code>acclimitisation_temp</code>? Is it
a factor? Convert <code>acclimitisation_temp</code> to a factor and
store the result in a new column in your dataframe called
<code>Facclimitisation_temp</code>. Hint: use the function
<code>factor()</code>. Use an appropriate plot to visualise these data
(perhaps a coplot or similar?).</p>
<p> </p>
<p>16. We will analyse these data using an Analysis of Covariance
(ANCOVA) to compare the slopes and the intercepts of the relationship
between <code>beat_rate</code> and <code>temp</code> for each level of
<code>Facclimatisation_temp</code>. Take a look at the plot you produced
in Q16, do you think the relationships are different?</p>
<p> </p>
<p>17. As usual we will fit the model using the <code>lm()</code>
function. You will need to fit the main effects of <code>temp</code> and
<code>Facclimatisation_temp</code> and the interaction between
<code>temp</code> and <code>Facclimatisation_temp</code>. You can do
this using either of the equivalent specifications:</p>
<p><code>temp + Facclimatisation_temp + temp:Facclimatisation_temp</code>
or</p>
<p><code>temp * Facclimatisation_temp</code></p>
<p> </p>
<p>18. Produce the summary ANOVA table as usual. Is the interaction
between <code>temp</code> and <code>Facclimatisation_temp</code>
significant? What is the interpretation of the interaction term? Should
we interpret the main effects of <code>temp</code> and
<code>Facclimatisation_temp</code> as well?</p>
<p> </p>
<p>19. Assess the assumptions of normality and equal variance of the
residuals in the usual way. Do the residuals meet these assumptions?
Discuss with a instructor.</p>
<p> </p>
<p>20. Write a short summary in you R script (don’t forget to comment
this out with <code>#</code>) describing the interpretation of this
model. Report the appropriate summary statistics such as <em>F</em>
values, degrees of freedom and p values.</p>
<p> </p>
<p>21. (Optional) refit the model using the square root transformed
<code>beat_rate</code> as the response variable. Does the interpretation
of the model change? Do the validation plots of the residuals look
better?</p>
<p> </p>
<p>End of Exercise 5</p>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
window.initializeCodeFolding("hide" === "show");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>