-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathwnet_simple.py
269 lines (229 loc) · 10.6 KB
/
wnet_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import theano.tensor as T
import numpy as np
import random
import theano
import lasagne
import _pickle as pickle
import matplotlib.pyplot as plt
import sys
sys.setrecursionlimit(100000)
import pandas as pd
# Helper function to compute receptive field
def compute_receptive_field(nStacks, dilation, filterWidth):
if filterWidth > 1:
receptiveField = nStacks*(dilation*filterWidth) - (nStacks-1)
else:
receptiveField = 1
return receptiveField
#############################################################
# DEFINE THE LAYERS
#############################################################
# A PReLU activation
class PReLU(object):
def __init__(self, X):
iAlpha = 0
self.alpha = theano.shared(value = iAlpha, borrow = True)
self.result = T.switch(X < 0, self.alpha * X, X)
self.params = [self.alpha]
class DilatedConv1D(object):
# Task:
# creates a dilated convolutional layer
# Args:
# rng: a random number generator used to initialize weights
# dilation: The dilation factor for each layer
# filterWidth: The samples that are included in each convolution, after dilating
# nFilters: How many filters to learn for the dilated convolution
# nChannels: Channels in input data
# batchSize: Size of training set used per iteration
# learningRate: Learning rate
def __init__(self, input, rng, dilation, filterHeight, filterWidth, nFilters, nChannels, applyBias, activation = 'linear'):
self.input = input
self.dilation = dilation
self.filterWidth = filterWidth
self.nFilters = nFilters
self.nChannels = nChannels
self.filterHeight = filterHeight
# Initialization of filter for each layer of size (nFilters, nChannels in input, filterHeight, filterWidth)
if activation == 'tanh':
iFilters = rng.uniform(-np.sqrt(6)/np.sqrt(2*filterWidth*nFilters), np.sqrt(6)/np.sqrt(2*filterWidth*nFilters), [nFilters, nChannels, filterHeight, filterWidth]).astype(theano.config.floatX)
elif activation == 'sigmoid':
iFilters = rng.uniform(-4*np.sqrt(6)/np.sqrt(2*filterWidth*nFilters), 4*np.sqrt(6)/np.sqrt(2*filterWidth*nFilters), [nFilters, nChannels, filterHeight, filterWidth]).astype(theano.config.floatX)
elif activation == 'relu':
iFilters = rng.normal(0, np.sqrt(2)/np.sqrt(filterWidth*nFilters), [nFilters, nChannels, filterHeight, filterWidth]).astype(theano.config.floatX)
else:
iFilters = rng.uniform(-np.sqrt(6)/np.sqrt(filterWidth*nFilters), np.sqrt(6)/np.sqrt(filterWidth*nFilters), [nFilters, nChannels, filterHeight, filterWidth]).astype(theano.config.floatX)
self.filters = theano.shared(value = iFilters, borrow = True)
# Convolve input feature map with filters
result = T.nnet.conv2d(self.input, self.filters, border_mode = 'valid', filter_dilation = (1,self.dilation))
# Check for bias
if applyBias:
# Define bias
iBias = np.zeros([nFilters], dtype = theano.config.floatX)
self.bias = theano.shared(value = iBias, borrow = True)
# Store parameters of this layer
self.params = [self.filters, self.bias]
# Apply bias
result += self.bias[None, :, None, None]
else:
self.params = [self.filters]
self.output = result
#############################################################
# BUILD THE MODEL
#############################################################
class cWaveNet(object):
def __init__(self, input, nCond, rng, nStacks, dilations, nFilters, filterWidth, nChannels):
recField = compute_receptive_field(nStacks, dilations[-1], filterWidth)
# Input shape is (nBatches = 1, nChannels, 1, N)
self.result = input
self.params = []
self.L2 = 0
# Define applyBias and activation used in DilatedConv1D layer
applyBias = True
activation = 'relu'
for s in range(nStacks):
for i in range(len(dilations)):
print('Stack ' + str(s) + ' Layer ' + str(i))
# Input will have nChannels channels, output will have nFilters channels
originalX = self.result
output = DilatedConv1D(self.result, rng, dilations[i], 1, filterWidth, nFilters, nChannels, applyBias, activation)
self.params += output.params
# Use regularization, here L2
self.L2 += 0.5*T.sum(T.sqr(output.params[0]))
outputPrelu = PReLU(output.output)
self.result = outputPrelu.result
# Add a residual connection from originalX to output
output = DilatedConv1D(originalX, rng, 1, 1, 1, nFilters, nChannels, applyBias, activation)
self.params += output.params
self.L2 += 0.5*T.sum(T.sqr(output.params[0]))
originalX = output.output
nChannels = nFilters
if filterWidth == 1:
self.result += originalX[:,:,:,:]
else:
self.result += originalX[:,:,:,dilations[i]:]
# End with a 1x1 convolution, to reduce nChannels back to nCond
print('Final layer')
output = DilatedConv1D(self.result, rng, 1, 1, 1, nCond, nChannels, applyBias)
self.resultFull = output.output
self.params += output.params
self.L2 += 0.5*T.sum(T.sqr(output.params[0]))
self.result = self.resultFull[:,:,:,0:-1]
#############################################################
# TRAIN AND EVALUATE THE MODEL
#############################################################
# CONDITIONAL WAVENET
# Takes as input the dataset with nCond inputs of size [N]
# Outputs the forecast
def trainCWN(dataset, nCond, rng, nStacks, dilations, nFilters, filterWidth, nChannels, regRate, trainIter, learningRate, nTest):
# Define the inputs and the functions
recField = compute_receptive_field(nStacks, dilations[-1], filterWidth)
input = T.tensor4('input')
testInput = input
model = cWaveNet(testInput, nCond, rng, nStacks, dilations, nFilters, filterWidth, nChannels)
# The cost function, e.g. absolute error
cost = T.sum(T.abs_(testInput[:,:,:,recField:]-model.result)) + regRate*model.L2
print('Building the gradients')
grads = T.grad(cost, model.params)
updates = lasagne.updates.adam(grads, model.params, learning_rate=learningRate)
# Define the test and train functions
train_fn = theano.function(
[input],
cost,
updates=updates,
on_unused_input='warn'
)
sample_fn = theano.function(
[input],
model.resultFull,
updates = updates,
on_unused_input = 'warn'
)
# Define the data: split the datasets into a train and test set
datasetTrain = dataset[:,:,:,:dataset.shape[3]-nTest]
N = datasetTrain.shape[3]
# Modify the input data to fit the model by appending recField zeros, in order to not have any look-ahead bias, i.e. the 'causal convolution'
trainData = np.append(np.zeros([dataset.shape[0],dataset.shape[1],dataset.shape[2],recField]), datasetTrain, axis = 3)
print('Training!')
totalIters = 0
costs = []
for j in range(0,trainIter):
cost = train_fn(trainData[:,:,:,:])
if j%1000==0:
print(totalIters, cost)
totalIters += 1
costs.append(cost)
print('Sampling!')
testData = np.append(np.zeros([dataset.shape[0],dataset.shape[1],dataset.shape[2],recField]), dataset, axis = 3) # Shape is 1, nCond, 1, N+nTest+recField
# One day ahead sampling
output = sample_fn(testData)[:,:,:,:-1]
return N, costs, output
#############################################################
# GET DATA
#############################################################
def getDataLorenz(stepCnt, dt = 0.01, initx = 0., inity = 1., initz = 1., s = 5, r = 20, b = 2):
xs = np.zeros(stepCnt+1)
ys = np.zeros(stepCnt+1)
zs = np.zeros(stepCnt+1)
xs[0], ys[0], zs[0] = (initx, inity, initz)
for i in range(stepCnt):
x_dot = s*(ys[i] - xs[i])
y_dot = r*xs[i] - ys[i] - xs[i]*zs[i]
z_dot = xs[i]*ys[i] - b*zs[i]
xs[i+1] = xs[i] + (x_dot * dt)
ys[i+1] = ys[i] + (y_dot * dt)
zs[i+1] = zs[i] + (z_dot * dt)
# Rescale data to [-0.5, 0.5] range
xs = (xs - np.amax(xs))/(np.amax(xs)-np.amin(xs)) + 0.5
ys = (ys - np.amax(ys))/(np.amax(ys)-np.amin(ys)) + 0.5
zs = (zs - np.amax(zs))/(np.amax(zs)-np.amin(zs)) + 0.5
return xs, ys, zs
#############################################################
# ERROR METRICS
#############################################################
# Usually we are interested in error over test set, i.e. dataset[N:N+nTest] - output[0,0,0,N:N+nTest]
def RMSE(dataset, output):
nTest = dataset.shape[0]
error = dataset - output
MSE = np.sum(error**2)/nTest
RMSE = np.sqrt(MSE)
return RMSE
#############################################################
# RESULTS
#############################################################
#Define the data; here we use the Lorenz curve
datax, datay, dataz = getDataLorenz(1500)
L = datax.shape[0]
data = np.concatenate((datax.reshape(1,L), datay.reshape(1,L), dataz.reshape(1,L)), axis = 0)
nCond = 3
# Reshape the data into a 4d tensor
dataset = data.reshape(1,nCond,1,L)
# The dilations array defines the number of layers and corresponding dilations, which we always set to be powers of 2, 2^0, 2^1,...
dilations = [1,2,4]
# nStacks is always set to 1 for now
nStacks = 1
# Note that each condition is defined as a channel in the input!
nChannels = nCond
nFilters = nCond
#Other parameters
filterWidth = 2
trainIter = 20000
learningRate = 0.001
regRate = 0.1
recField = compute_receptive_field(nStacks, dilations[-1], filterWidth)
nTest = 500
RMSE_con = np.zeros([1, nCond])
# Conditional results
rng = np.random.RandomState(1234) # Set random state
N1, costs1, out = trainCWN(dataset, nCond, rng, nStacks, dilations, nFilters, filterWidth, nChannels, regRate, trainIter, learningRate, nTest)
for j in range(0,nCond):
RMSE_con[0,j] += [RMSE(dataset[0,j,0,N1:N1+nTest], out[0,j,0,N1:N1+nTest])]
print(RMSE_con)
nPlot = 0
f, (ax1, ax2, ax3) = plt.subplots(3)
ax1.plot(datax[-nPlot:], 'g')
ax1.plot(out[0,0,0,-nPlot:],'r')
ax2.plot(datay[-nPlot:], 'g')
ax2.plot(out[0,1,0,-nPlot:],'r')
ax3.plot(dataz[-nPlot:], 'g')
ax3.plot(out[0,2,0,-nPlot:],'r')
plt.show()