-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_MRO_Helsinki_CIO_TTT_BCQ_v1.py
841 lines (725 loc) · 37.7 KB
/
test_MRO_Helsinki_CIO_TTT_BCQ_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
"""Script by QL: completed and tested
Patent thread of socket client and 2 child threads:
1. listen: listen message in the background and put all it in the received message queue "receive_q"
2. run_agent: write message to config or kpi report, get the next config with predefined fixed values, and send back to
season
Experiment: Single cell DQN to optimize CIO and TTT
- define a source cell and its neighboring cells
- for the source cell i, optimize its CIOs to the neighboring cells {CIO_{i,j}: i = 1,2, ...} and TTT values TTT_i
- use DQN
!!! State and reward normalized based on the exploration phase
- State:
1) per-cell number of ues
2) per-cell actual load
3) per-cell average throughput
4) per-cell too-early HO
5) per-cell too-late HO
6) per-cell ping-pong HO
7) per-cell wrong-cell HO
- action:
1) TTT of source cell
2) CIO of source cell to each of the neighboring cell
- reward:
(sum_cell_too_early + sum_cell_too_late + 0.5* sum_cell_pingpong + 0.5*sum_cell_wrong + sum_cell_too_late)
/sum_cell_number_of_ue
Note!!! both state and reward needs to be normalized!! we use the samples in exploration phase for normalization.
Simulation time in sec. with realtime factor 200, 15 mins (60*15=900s) is 4.5s in real time, but if the
simulator real time performance is ~100, then we have 9s per sample, and configuration change needs 35-40s
in local computer, i.e. 50s real time per configuration, for (1344+192)*50/3600 = 21.3 hour
"""
import socket
import struct
import threading
import queue
import time
import numpy as np
import pandas as pd
import json
import copy
import pickle
from time import time
import matplotlib.pyplot as plt
import itertools
import copy
import collections
from collections import deque
import random
# import tensorflow as tf
# from tensorflow.keras.layers import Dense, Input, LeakyReLU, Dropout # change
# from tensorflow.keras.optimizers import Adam
import os
from datetime import datetime
import torch
def dict_merge(dct, merge_dct):
""" Recursive dict merge. Inspired by :meth:``dict.update()``, instead of
updating only top-level keys, dict_merge recurses down into dicts nested
to an arbitrary depth, updating keys. The ``merge_dct`` is merged into
``dct``.
:param dct: dict onto which the merge is executed
:param merge_dct: dct merged into dct
:return: None
"""
for k, v in merge_dct.items():
if (k in dct and isinstance(dct[k], dict)
and isinstance(merge_dct[k], collections.Mapping)):
dict_merge(dct[k], merge_dct[k])
else:
dct[k] = merge_dct[k]
class Configuration:
# test: C = Configuration(TC.agent.current_cfg, '*.RRH_cells.*.transceivers.*.HO_triggers'.split('.'))
def __init__(self, dict_cfg, ofs_ttt_path, cio_path, dict_neighbor_cells):
self.dict_cfg = dict_cfg
self.ofs_ttt_search_path = ofs_ttt_path
self.cio_search_path = cio_path
self.dict_neighbor_cells = dict_neighbor_cells
#
self.cfg_paths = []
self.cfg_values = []
"""self.ofs_ttt_values: a list of per-cell offset and TTT configuration, note that 'HO_triggers' is a list of
dictionaries, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]"""
self.ofs_ttt_paths = []
self.ofs_ttt_values = []
"""self.cio_values: a list of neighbor cio dictionaries: list of dictionaries, each element indicates CIO to a
neighboring cell, e.g. [{"trigger_type": "A3", "other_cell_trx": "site03[0][A]", "offset": 0},
{"trigger_type": "A3", "other_cell_trx": "site03[2][A]", "offset": 0}]"""
self.cio_paths = []
self.cio_values = []
self.dict_cio_values = None
#
self.df_ofs_ttt = pd.DataFrame(columns=['src_cell', 'offset', 'TTT'])
self.df_cio = pd.DataFrame(columns=['src_cell', 'nbr_cell', 'CIO'])
self.get_ofs_ttt_path()
self.get_cio_path()
#
self.Groups = None
# self.cnt = 0
# keep initial group definition for incremental changes
if self.Groups is None:
self.Groups = copy.deepcopy(dict_cfg['Groups'])
'''define traffic mask of 24 hours'''
self.group24 = [0.8, 0.65, 0.4, 0.15, 0.2, 0.3, 0.6, 0.8, 0.9, 0.8, 1.2, 1.3,
1.5, 1.8, 2.0, 1.7, 1.8, 1.5, 1.4, 1.5, 1.1, 1.0, 0.9, 0.8]
def get_path_values(self, tree, path, indx=0):
"""walks down a json tree and stores all possible paths and values of a Season configuration
:param tree: dictionary containing json tree
:param path: path specifier
:param indx: index level
"""
if indx < len(path):
# not the final path end reached continue walk down
if isinstance(path[indx], str):
# print(path[indx])
if path[indx] == '*':
# wildcard found iterate through set of options
for k in tree.keys():
# print(k)
new_path = path.copy()
new_path[indx] = k
# recursive walk down on next level of tree
self.get_path_values(tree[k], new_path, indx + 1)
else:
# recursive walk down on next level of tree
self.get_path_values(tree[path[indx]], path, indx + 1)
else:
# final end of path reached keep full path string and value in separate arrays
self.cfg_paths.append(path)
self.cfg_values.append(tree)
def get_ofs_ttt_path(self):
self.cfg_paths = []
self.cfg_values = []
self.get_path_values(self.dict_cfg['Sites'], self.ofs_ttt_search_path)
self.ofs_ttt_paths = copy.deepcopy(self.cfg_paths)
self.ofs_ttt_values = copy.deepcopy(self.cfg_values)
self.df_ofs_ttt['src_cell'] = [n[0] + '[' + n[2] + '][' + n[4] + ']' for n in self.ofs_ttt_paths]
self.df_ofs_ttt['offset'] = [x[0]['offset'] for x in self.ofs_ttt_values]
self.df_ofs_ttt['TTT'] = [x[0]['TTT'] for x in self.ofs_ttt_values]
def get_cio_path(self):
self.cfg_paths = []
self.cfg_values = []
self.get_path_values(self.dict_cfg['Sites'], self.cio_search_path)
self.cio_paths = copy.deepcopy(self.cfg_paths)
self.cio_values = copy.deepcopy(self.cfg_values)
ls_src_cells = [n[0] + '[' + n[2] + '][' + n[4] + ']' for n in self.cio_paths]
self.dict_cio_values = {k: v for k, v in zip(ls_src_cells, self.cio_values)}
#
ls_df_cio = []
for n, ls_nbr in zip(self.cio_paths, self.cio_values):
sub_df = pd.DataFrame(columns=['src_cell', 'nbr_cell', 'CIO'])
ls_nbr_cell = [d['other_cell_trx'] for d in ls_nbr]
ls_cio = [d['offset'] for d in ls_nbr]
sub_df['nbr_cell'] = ls_nbr_cell
sub_df['CIO'] = ls_cio
sub_df['src_cell'] = n[0] + '[' + n[2] + '][' + n[4] + ']'
ls_df_cio.append(sub_df)
self.df_cio = pd.concat(ls_df_cio)
"""E.g., cio_values = [{"trigger_type": "A3", "other_cell_trx": "site03[0][A]", "offset": 0},
{"trigger_type": "A3", "other_cell_trx": "site03[2][A]", "offset": 0}]"""
def get_cfg(self, ofs_ttt_values=None, cio_values=None, timestamp=None):
""" get new Season configuration for given set of values
:param values: values: overwrites internal configuration values
:param timestamp: 24 hour seasonality to be used for group size modification
:return: new Season configuration
"""
# get path values to per cell offset and ttt
my_ofs_ttt_values = self.ofs_ttt_values if ofs_ttt_values is None else ofs_ttt_values
cfg_ofs_ttt = {}
for i in range(len(self.ofs_ttt_paths)):
self.get_path_config(cfg_ofs_ttt, self.ofs_ttt_paths[i], my_ofs_ttt_values[i])
# print('cfg ofs ttt:', cfg_ofs_ttt)
# get path values to per cell cio (to all neighbor list of the src cell)
my_cio_values = self.cio_values if cio_values is None else cio_values
cfg_cio = {}
for i in range(len(self.cio_paths)):
self.get_path_config(cfg_cio, self.cio_paths[i], my_cio_values[i])
# print('cfg cio:', cfg_cio)
dict_merge(cfg_ofs_ttt, cfg_cio)
# print(cfg_ofs_ttt)
cfg = {'Sites': cfg_ofs_ttt}
# change group sizes acc. to group24 parameter - adds 24h seasonality
if len(self.group24) == 24 and timestamp is not None:
new_groups = copy.deepcopy(self.Groups)
# take time tick 0 as 0:00 a.m.
indx = int((timestamp // 3600) % 24)
print('[INFO]: change traffic mask config, hour of the day', indx)
for group in new_groups.values():
# modify all groups acc. group24 parameter
group['parameters']['group_size'] = int(group['parameters']['group_size'] * self.group24[indx])
cfg['Groups'] = new_groups
return cfg
def get_path_config(self, config, path, value):
"""set value of given configuration for path path and value
:param config: Season configuration
:param path: actual path
:param value: actual value
:return: None
"""
if len(path) == 1:
# final end of path reached, set value
config[path[0]] = value
else:
# intermediate stage reached
if path[0] not in config.keys():
# generate empty dicts for all possible keys
config[path[0]] = {}
# walk down next level on path
self.get_path_config(config[path[0]], path[1:], value)
class ReplayBuffer:
"""
Replay Buffer:
we randomly sample the batch of transitions from the replay buffer, which allows us to break
the correlation between subsequent steps in the environment
"""
def __init__(self, capacity=2100):
self.buffer = deque(maxlen=capacity)
self.min_replay_size = 200 # minimum replay size for start training # change
def store(self, state, action, reward, next_state):
self.buffer.append([state, action, reward, next_state])
def sample(self, batch_size=32):
sample = random.sample(self.buffer, batch_size)
states, actions, rewards, next_states = map(np.asarray, zip(*sample))
states = np.array(states).reshape(batch_size, -1)
next_states = np.array(next_states).reshape(batch_size, -1)
return states, actions, rewards, next_states
def size(self):
return len(self.buffer)
def get_mean_std(self): # change: this whole function is added
"""
get the mean and std for state and reward
:return:
"""
state_dim = len(self.buffer[0][0])
ls_state = [x[0] for x in self.buffer]
arr_state = np.concatenate(ls_state).reshape((-1, state_dim))
mean_state = arr_state.mean(axis=0)
std_state = arr_state.std(axis=0)
# if the std = 0, then we need to assign a nonzeros offset
std_state[np.where(std_state == 0)] = 1
arr_reward = np.array([x[2] for x in self.buffer])
mean_reward = arr_reward.mean()
std_reward = arr_reward.std()
return mean_state, std_state, mean_reward, std_reward
def rescale_sample_in_buffer(self, mean_state, std_state, mean_reward, std_reward): # change: this whole function is added
for buf in self.buffer:
for i in [0, 3]:
buf[i] -= mean_state
buf[i] /= std_state
buf[2] -= mean_reward
buf[2] /= std_reward
# class DQN:
# def __init__(self, state_dim, action_dim):
# """
# :param num_CIOs: number of CIOs in the source cell
# """
# self.state_dim = state_dim
# self.action_dim = action_dim
# self.learning_rate = 0.001 # change
# self.epsilon = 1 # epsilon-greedy algorithm, 1 means every step is random
# self.epsilon_min = 0.01 # change
# self.decay = 0.997 # change
# self.model = self.nn_model()
#
# def nn_model(self):
# model = tf.keras.Sequential(
# [Input((self.state_dim,)),
# #Dense(32, activation="relu"), # change commented out
# #Dense(64, activation="relu"),
# #Dense(256, activation="relu"),
# #Dense(512, activation="relu"),
# # Dense(512, activation="relu"),
# Dense(32), # change the layers
# LeakyReLU(alpha=0.2),
# Dropout(0.5),
# Dense(64),
# LeakyReLU(alpha=0.2),
# Dropout(0.5),
# Dense(256),
# LeakyReLU(alpha=0.2),
# Dropout(0.5),
# Dense(512),
# LeakyReLU(alpha=0.2),
# Dropout(0.5),
# Dense(512),
# LeakyReLU(alpha=0.2),
# Dropout(0.5),
# Dense(self.action_dim),
# ]
# )
# # 1) use leakyRelu as activation function: activation=partial(tf.nn.leaky_relu, alpha=0.01),
# # 2) delete few layers, the network may easily overfitting
# model.compile(loss="mse", optimizer=Adam(self.learning_rate))
# return model
#
# def predict(self, state):
# return self.model.predict(state)
#
# def get_action(self, state):
# state = np.reshape(state, [1, self.state_dim])
# self.epsilon *= self.decay
# self.epsilon = max(self.epsilon, self.epsilon_min)
# q_value = self.predict(state)[0]
# if np.random.random() < self.epsilon:
# print('[INFO]: explore random action...') # change
# return random.randint(0, self.action_dim-1)
# print('[INFO]: model output action...') # change
# return np.argmax(q_value)
#
# def train(self, states, targets):
# self.model.fit(states, targets, epochs=1)
class RlAgent:
def __init__(self):
self.configs = [] # list of ho parameters for all trx's along time
self.reports = [] # list of reports
self.rep_new_state = [] # collection of reports to compute the new state (after a new config)
self.rep_state = [] # collection of reports to compute the state (before a new config)
self.num_train = 96*2 # 96*14 (3 days)two weeks of training # change
self.num_test = 5 # 2 days of the testing # change
# if 1 sample per 15 min (900s simulation time), 24 samples = 6h, train model every 6h, and target every day
self.num_update_model = 12 # 24: no. of samples collected to train model with replay experience
# self.num_update_target = 4*12 # 4*24: no. of samples collected to update the target model
self.num_train_per_update = 30
self.num_explore = 96*0.5 # change 96*2 is the original
self.ls_ep_reward = []
self.ep_idx = 0
# each model parameters
self.gamma = 0.7 # discount factor
self.batch_size = 8 # change
#
self.current_cfg = None # current cfg as a class
self.prev_raw_report = None # previous raw report. # change: this line is added
self.timestamp = 0
self.ls_realtime = [time()]
'''get dictionary of cells and their corresponding neighbors '''
self.ls_cells = []
self.dict_neighbor_cells = None
self.path_to_site_json = 'C:/Users/Administrator/OneDrive - Nokia/Documents\Software/Season-2020d/SEASON II' \
' 2020d/SON_v2/config/scenario_config/' \
'Helsinki_test-Sites-new.json'
self.path_to_cfg_json = 'C:/Users/Administrator/OneDrive - Nokia/Documents/Software/Season-2020d/SEASON II 2020d/SON_v2/config/scenario_config' \
'/Helsinki_MRO_test_QL_25_05.json'
'''
self.path_to_site_json = 'C:/Users/liaoq/Documents/Software/SEASON II 2020d/SEASON II 2020d/SON_v2/config/' \
'scenario_config/Helsinki_test-Sites.json'
self.path_to_cfg_json = 'C:/Users/liaoq/Documents/Software/SEASON II 2020d/SEASON II 2020d/SON_v2/config/' \
'scenario_config/Helsinki_MRO_test_QL.json'
'''
self.path_mean_std = 'Results/state_kpi_mean_and_std.pickle' # change add this line
self.get_neighbor_cells()
'''DQN to change TTT, and cell pair CIO'''
self.src_cell = 'site04[0][A]' # only get kpis of src cell and its neighboring cell
self.nbr_cells = self.dict_neighbor_cells[self.src_cell]
self.src_nbr_cells = [self.src_cell] + self.nbr_cells
#self.norm_num_ues = self.get_group_size() # change commented out
'''reward'''
self.ls_reward_kpi = ['early_handovers_count', 'wrong_cell_handovers_count', 'pingpong_handovers_count',
'late_handovers_count', 'total_number_of_ues']
# change: make sure you have correct states here
self.ls_state_kpi = ['number_of_connected_ues', 'actual_load', 'early_handovers_count',
'wrong_cell_handovers_count', 'pingpong_handovers_count', 'late_handovers_count'] # change
# self.weight_kpi = [1, 1, 1, 0.5] # [0.25, 0.15, 0.05, 0.5] # change comment out these two lines
# self.weight_cell = [0.4] + [0.6/len(self.nbr_cells)]*len(self.nbr_cells)
self.state_dim = len(self.ls_state_kpi) * len(self.src_nbr_cells)
self.state_mean = np.zeros(self.state_dim) # change add this line
self.state_std = np.ones(self.state_dim) # change add this line
self.reward_mean = 0 # change add this line
self.reward_std = 1 # change add this line
''' Action space: HO parameters '''
self.TTT_pool = [0.128, 0.512, 1.024, 2.56] # in sec
self.CIO_pool = [int(x) for x in [-5, -2, 0, 2, 5]] # in dB
ls_config = [self.TTT_pool] + [self.CIO_pool] * len(self.nbr_cells)
self.permu_pool = list(itertools.product(*ls_config))
self.action_dim = len(self.permu_pool)
''' DQN model initialization'''
# self.dqn_model = DQN(self.state_dim, self.action_dim)
# self.dqn_target_model = DQN(self.state_dim, self.action_dim)
# self.update_target()
self.current_action = None
self.buffer = ReplayBuffer()
self.last_train_bufsize = self.buffer.size() # change: replace it with cnt_sample
self.save_path = 'Helsinki_BCQ_25_05_Test4.pickle' # single cell DQN
'''default HO parameters for other cells, HO parameter path'''
self.default_offset = int(0)
self.default_TTT = 0.512
self.default_CIO = int(0)
self.Offset_TTT_path = '*.cells.*.transceivers.*.HO_triggers'
# note that 'HO_triggers' is a list of HO parameters, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]
self.CIO_path = '*.cells.*.transceivers.*.cell_individual_HO_offset'
self.last_msg = None
self.actor = torch.load('trained_actor_1')
self.vae = torch.load('trained_vae_1')
self.critic = torch.load('trained_critic_1')
# 'cell_individual_HO_offset' is a list of dictionaries, each element indicates CIO to a neighboring cell, e.g.
# [{"trigger_type": "A3",
# "other_cell_trx": "site03[0][A]",
# "offset": 0},
# {"trigger_type": "A3",
# "other_cell_trx": "site03[2][A]",
# "offset": 0
# }]
# def update_target(self):
# weights = self.dqn_model.model.get_weights()
# self.dqn_target_model.model.set_weights(weights)
# def replay_experience(self):
# for _ in range(self.num_train_per_update):
# states, actions, rewards, next_states = self.buffer.sample(self.batch_size)
# targets = self.dqn_target_model.predict(states)
# next_q_values = self.dqn_target_model.predict(next_states)[
# range(self.batch_size),
# np.argmax(self.dqn_model.predict(next_states), axis=1)
# ]
# targets[range(self.batch_size), actions] = (rewards + next_q_values * self.gamma)
# self.dqn_model.train(states, targets)
def get_neighbor_cells(self):
dict_sites = json.load(open(self.path_to_site_json))
ls_key = []
ls_neighbors = []
for k, v in dict_sites.items():
for k_cell, v_cell in v['cells'].items():
for k_sec, v_sec in v_cell['transceivers'].items():
ls_key.append(k + '[' + k_cell + '][' + k_sec + ']')
ls_neighbors.append(v_sec['neighbour_relations'])
self.dict_neighbor_cells = {k: v for k, v in zip(ls_key, ls_neighbors)}
self.ls_cells = list(self.dict_neighbor_cells.keys())
# change: comment out: def get_group_size(self):
def add_config(self, dict_cfg):
""" add new configurtaion to the list
:param dict_cfg: dictionary of actual season configuration
:return:
"""
# change: from here till cfg is added
# when receives a next config, the state before the config becomes state, and waiting for the states after to be
# the new state
# sometimes simulator sends two configs consecutively. then rep_state =[] and after receiving
# a KPI report len(rep_new_state) = 1, therefore we update rep_state only when rep_new_state is not empty
if len(self.reports) > 0:
if len(self.rep_new_state) > 0:
self.rep_state = self.rep_new_state.copy()
else:
self.rep_state = [self.reports[-1].copy()]
self.rep_new_state = []
cfg = Configuration(dict_cfg, self.Offset_TTT_path.split('.'), self.CIO_path.split('.'), self.dict_neighbor_cells)
self.configs.append([self.timestamp, cfg.df_ofs_ttt, cfg.df_cio])
# self.cfg_timestamp.append(self.timestamp) # this is the timestamp of the last KPI report
print('[INFO] number of collected config: ', len(self.configs))
self.current_cfg = cfg
self.last_msg = 'config'
def add_report(self, dict_rpt):
# write report dict in a sub df
self.ls_realtime.append(time())
print('[INFO] real time interval between the reports: ', self.ls_realtime[-1] - self.ls_realtime[-2])
# simulator timestamp
self.timestamp = dict_rpt['kpi_report']['all_cell_trx_kpis']['timestamp']
#
ls_kpi_names = dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_names']
ls_kpi_values = dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_values']
sub_df = pd.DataFrame(columns=['timestamp'] + ls_kpi_names)
num_trx = len(dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_values'])
for idx_trx in range(num_trx):
ls_trx_values = [self.timestamp] + ls_kpi_values[idx_trx]
sub_df.at[idx_trx, :] = ls_trx_values
# change: "self.reports.append(sub_df)" is commented out
# change: from here till the end of "self.prev_raw_report = sub_df" is added
# subtract the HO counts from the previous report, since counts accumulated along the time
proc_sub_df = sub_df.copy(deep=True)
if self.prev_raw_report is not None:
for col in list(proc_sub_df.columns):
if 'count' in col:
proc_sub_df[col] = proc_sub_df[col].values - self.prev_raw_report[col].values
self.reports.append(proc_sub_df)
self.rep_new_state.append(proc_sub_df)
print('[INFO] number of state report: ', len(self.rep_state))
print('[INFO] number of new state report: ', len(self.rep_new_state))
self.prev_raw_report = sub_df
self.last_msg = 'report'
print('[INFO] number of collected report: ', len(self.reports))
# chnage: commented out: self.rep_new_state.append(sub_df)
def add_replay_sample(self):
"""
- state, action, reward, next_state
in this case we do not have episode, continuous training with one environment, we do not reset the environment
:return:
"""
'''action'''
action = self.current_action # index of the action
'''state'''
# get state (before taking the action): number of ues and actual load for src and nbr stations
state = self.get_dqn_state(self.rep_state[-1])
state = self.normalize_state(state) # change: this line is added
# print("++++++++++++ state dimensions:", state.shape)
'''new_state'''
next_state = self.get_dqn_state(self.rep_new_state[0]) # change: the argument -1 is changed to 0
next_state = self.normalize_state(next_state) # change: this line is added
'''reward'''
arr_kpi = self.get_reward_kpis() # change: large degree of changes from here till the end of method
if arr_kpi.sum(axis=0)[4] > 0:
reward = - arr_kpi.sum(axis=0)[:4] @ np.array([1, 0.5, 0.5, 1]) / arr_kpi.sum(axis=0)[4]
reward = self.normalize_reward(reward)
self.buffer.store(state, action, reward, next_state)
self.ls_ep_reward.append(reward)
''' --- Right after exploration: get mean and std for normalization & normalize samples in buffer --- '''
if len(self.buffer.buffer) == self.num_explore:
self.state_mean, self.state_std, self.reward_mean, self.reward_std = self.buffer.get_mean_std()
print('[INFO]: Finished exploration, reward mean = {} and reward std = {}'.format(self.reward_mean,
self.reward_std))
# rescale/normalize state and reward samples in buffer
self.buffer.rescale_sample_in_buffer(self.state_mean, self.state_std, self.reward_mean, self.reward_std)
# rescale/normalize the rewards in the ls_ep_reward
self.ls_ep_reward = [(x[2] - self.reward_mean)/self.reward_std for x in self.buffer.buffer]
print('[Info]: add replay sample {}, action index is {} and reward is {}'.format(self.buffer.size(),
action, reward))
def get_dqn_state(self, df_rep):
vec_state = np.concatenate([df_rep.loc[df_rep['unique_name'] == n,
self.ls_state_kpi].values for n in self.src_nbr_cells], axis=1) # change: , axis=1 is added
# change: this line is removed:
# vec_state[:, 0] = vec_state[:, 0] / self.norm_num_ues
return vec_state.flatten().astype('float32')
# change: the following three methods are added
def normalize_state(self, state):
state = np.divide(state - self.state_mean, self.state_std)
return state
def normalize_reward(self, reward):
reward -= self.reward_mean
reward /= self.reward_std
return reward
def get_reward_kpis(self):
df_rwd = self.rep_new_state[0]
arr_kpi = np.concatenate([df_rwd.loc[df_rwd['unique_name'] == n, self.ls_reward_kpi].values
for n in self.src_nbr_cells])
arr_kpi = arr_kpi.clip(min=0)
return arr_kpi
def next_config(self, timestamp=None):
"""
:param timestamp:
:return:
"""
'''
train and update the model when:
1) enough samples in buffer is collected
2) collected sample (configurations) smaller than the number of trainings
'''
# if (self.buffer.size() >= self.buffer.min_replay_size) & (self.buffer.size() < self.num_train): # change: self.buffer.size() is replaced with self.cnt_sample
# # training only when 1) periodically after collecting samples, 2) buffer size larger than the last training
# # This is to prevent delayed received report because of long communication time with SEASON
# # change: self.buffer.size() is replaced with self.cnt_sample and another if condition is added:
# # & (self.buffer.size() > self.last_train_bufsize)
# if (self.buffer.size() % self.num_update_model == 0) & (self.buffer.size() > self.last_train_bufsize):
# self.replay_experience()
# ep_reward = np.array(self.ls_ep_reward).mean()
# # from the previous episode
# print(f"Episode#{self.ep_idx} reward:{ep_reward}")
# tf.summary.scalar("episode_reward", ep_reward, step=self.ep_idx)
# self.ep_idx += 1
# self.ls_ep_reward = []
# # the following line is added
# self.last_train_bufsize = self.buffer.size() # buffer size of when last training
# if self.buffer.size() % self.num_update_target == 0: # change: cnt_sample is replaced with buffer.size() #done till here
# self.update_target()
'''decide the next config'''
# note that 'HO_triggers' is a list of dictionaries, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]
'''get TTT and CIO_s,t and CIO_t,s'''
if self.buffer.size() > self.num_explore:
# change: the following 5 lines are added till the end of if clause
state = self.get_dqn_state(self.rep_state[-1])
state = self.normalize_state(state)
"BCQ Decision Making"
print("==================================")
print("++++++ BCQ Decision Making ++++++")
print("==================================")
repeated_state = torch.FloatTensor(state.reshape(1, -1)).repeat(100, 1).to(torch.device("cpu"))
print("repteated state dimensions:", repeated_state.size())
candid_action = self.actor(repeated_state, self.vae.decode(repeated_state))
q1 = self.critic.q1(repeated_state, candid_action)
action_ind = q1.argmax(0)
action = candid_action[action_ind].cpu().data.numpy().flatten()
# Clipping action values
action[0] = np.clip(action[0], 0.004, 5.12)
action[1:4] = np.clip(action[1:4], -6, 6)
action_value = action
action_value = np.float64(action_value)
# no exploration in the testing phase
# if self.buffer.size() > self.num_train:
# self.dqn_model.epsilon = 0
# action = self.dqn_model.get_action(state) # change: the argument is changed to state
else:
action = random.randint(0, self.action_dim-1)
print('[INFO]: explore random action...') # change: this print is added
action_value = self.permu_pool[action]
self.current_action = action
# action_value = self.permu_pool[action]
# action_value = action
# print("action values:", action_value)
'''assign default offset and TTT values'''
df_ofs_ttt = self.configs[-1][1].copy(deep=True)
df_ofs_ttt['offset'] = self.default_offset
df_ofs_ttt['TTT'] = self.default_TTT
'''assign TTT to the source cell'''
df_ofs_ttt.loc[df_ofs_ttt['src_cell'] == self.src_cell, 'TTT'] = action_value[0]
# print('[INFO] next config ttt = ', action_value[0])
ls_ofs_ttt = [[{'event_type': 'A3', 'offset': int(o), 'TTT': float(t)}]
for o, t in zip(df_ofs_ttt['offset'].values, df_ofs_ttt['TTT'].values)]
'''initialize all cells CIOs with default CIO value: after receiving the first configuration'''
if len(self.configs) == 1:
# set all cio to default values
# [{"trigger_type": "A3",
# "other_cell_trx": "site03[0][A]",
# "offset": 0},
# {"trigger_type": "A3",
# "other_cell_trx": "site03[2][A]",
# "offset": 0
# }]
for k, v in self.current_cfg.dict_cio_values.items():
for i in range(len(self.current_cfg.dict_cio_values[k])):
self.current_cfg.dict_cio_values[k][i]['offset'] == self.default_CIO
'''assign CIOs for every pair of (source cell, target cell)'''
# print('[INFO] next config src cell cio = ', action_value[1:])
for i in range(len(self.current_cfg.dict_cio_values[self.src_cell])):
self.current_cfg.dict_cio_values[self.src_cell][i]['offset'] = action_value[i+1]
# action_value[0] is TTT, CIO values starts from action_value[1:]
ls_cio = list(self.current_cfg.dict_cio_values.values())
return self.current_cfg.get_cfg(ofs_ttt_values=ls_ofs_ttt, cio_values=ls_cio, timestamp=timestamp)
def save_results(self):
pickle.dump((self.configs, self.reports, self.buffer.buffer), open(self.save_path, 'wb'))
class ThreadedClient(threading.Thread):
def __init__(self, host, port):
threading.Thread.__init__(self)
# set up queues
self.receive_q = queue.Queue()
self.send_q = queue.Queue()
self.msgs = ''
self.flag_run = True
# self.last_msg = 'report'
# declare instance variables
self.host = host
self.port = port
# connect to socket
self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.s.connect((self.host, self.port))
self.s.settimeout(.1)
self.agent = RlAgent()
# self.current_config = None
# self.report_cnt = 0
'''LISTEN to season, but if send_q has new config, send to season'''
def listen(self):
""" listen to season and add the config and report messages in the queue
:return:
"""
while self.flag_run:
try:
# if there is a updated configuration, then push config to season
if not self.send_q.empty():
print('[INFO] send a new configuration...')
self.send_config()
# print('listening...')
m = self.s.recv(26240000).decode("utf-8").split('\0')
if 'config' in m[0][:20]:
print('[INFO] RECEIVED: config head message...')
elif 'kpi_report' in m[0][:20]:
print('[INFO] RECEIVED: KPI head message...')
if ('kpi_report' in m[0][:20]) or ('config' in m[0][:20]):
self.msgs = m[0]
else:
self.msgs += m[0]
try:
msg_json = json.loads(self.msgs)
# put all kpi_reports in the queue
self.receive_q.put(msg_json)
# print('report queue size: ', self.receive_q.qsize())
self.msgs = ''
except:
pass
except socket.timeout:
pass
def start_listen(self):
t_listen = threading.Thread(target=self.listen)
t_listen.start()
print('started listen')
'''RUN AGENT: write received messages to report and config, decide next config, put in to the send_q queue'''
def run_agent(self):
# keep reading self.receive_q and collect the report into a data frame
while self.flag_run:
try:
# get report dict from the queue
dict_msg = self.receive_q.get()
if list(dict_msg.keys())[0] == 'kpi_report':
"""add report to the RL Agent"""
if self.agent.last_msg == 'config':
flag_add_sample = True
else:
flag_add_sample = False
self.agent.add_report(dict_msg)
if flag_add_sample & (len(self.agent.configs) >= 2):
self.agent.add_replay_sample()
# change: cnt_sample to buffer.size() and second if condition is added
if (self.agent.buffer.size() <= self.agent.num_train + self.agent.num_test) & \
(len(self.agent.configs) >= 1):
next_config = self.agent.next_config()
self.send_q.put(next_config)
else:
self.flag_run = False
self.agent.save_results()
elif list(dict_msg.keys())[0] == 'config':
self.agent.add_config(dict_msg['config'])
except queue.Empty:
pass
def start_run_agent(self):
t_agent = threading.Thread(target=self.run_agent)
t_agent.start()
print('started run agent')
def send_config(self):
next_config = self.send_q.get()
print("next_config type:", type(next_config))
print("next_config:", next_config)
cmd = json.dumps(next_config) + '\0'
self.s.send(cmd.encode())
if __name__ == '__main__':
port = 8000
address = 'localhost'
TC = ThreadedClient(address, port)
logdir = os.path.join('logs', 'DQN', TC.agent.src_cell, datetime.now().strftime("%Y%m%d-%H%M%S"))
print(f"Saving training logs to:{logdir}")
# writer = tf.summary.create_file_writer(logdir)
#
# with writer.as_default():
TC.start()
print('Server started, port: ', port)
TC.start_listen()
TC.start_run_agent()