-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG_AM_MRO_CIOTTT.py
798 lines (682 loc) · 34.9 KB
/
DDPG_AM_MRO_CIOTTT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
"""Script by Arsham: working process
Patent thread of socket client and 2 child threads:
1. listen: listen message in the background and put all it in the received message queue "receive_q"
2. run_agent: write message to config or kpi report, get the next config with predefined fixed values, and send back to
season
Experiment: Single cell DDPG to optimize CIO and TTT
- define a source cell and its neighboring cells
- for the source cell i, optimize its CIOs to the neighboring cells {CIO_{i,j}: i = 1,2, ...} and TTT values TTT_i
- using DDPG
Simulation time in sec. with realtime factor 200, 15 mins (60*15=900s) is 4.5s in real time, but if the
simulator real time performance is ~100, then we have 9s per sample, and configuration change needs 35-40s
in local computer, i.e. 50s real time per configuration, for (1344+192)*50/3600 = 21.3 hour
"""
import socket
import struct
import threading
import queue
import time
import numpy as np
import pandas as pd
import json
import pickle
from time import time
import matplotlib.pyplot as plt
import itertools
import copy
import collections
from collections import deque
import random
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
print(tf.__version__)
import os
from datetime import datetime
from tensorflow.keras.layers import Dense, Input, Lambda, concatenate
def dict_merge(dct, merge_dct):
""" Recursive dict merge. Inspired by :meth:``dict.update()``, instead of
updating only top-level keys, dict_merge recurses down into dicts nested
to an arbitrary depth, updating keys. The ``merge_dct`` is merged into
``dct``.
:param dct: dict onto which the merge is executed
:param merge_dct: dct merged into dct
:return: None
"""
for k, v in merge_dct.items():
if (k in dct and isinstance(dct[k], dict)
and isinstance(merge_dct[k], collections.Mapping)):
dict_merge(dct[k], merge_dct[k])
else:
dct[k] = merge_dct[k]
class Configuration:
# test: C = Configuration(TC.agent.current_cfg, '*.RRH_cells.*.transceivers.*.HO_triggers'.split('.'))
def __init__(self, dict_cfg, ofs_ttt_path, cio_path, dict_neighbor_cells):
self.dict_cfg = dict_cfg
self.ofs_ttt_search_path = ofs_ttt_path
self.cio_search_path = cio_path
self.dict_neighbor_cells = dict_neighbor_cells
#
self.cfg_paths = []
self.cfg_values = []
"""self.ofs_ttt_values: a list of per-cell offset and TTT configuration, note that 'HO_triggers' is a list of
dictionaries, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]"""
self.ofs_ttt_paths = []
self.ofs_ttt_values = []
"""self.cio_values: a list of neighbor cio dictionaries: list of dictionaries, each element indicates CIO to a
neighboring cell, e.g. [{"trigger_type": "A3", "other_cell_trx": "site03[0][A]", "offset": 0},
{"trigger_type": "A3", "other_cell_trx": "site03[2][A]", "offset": 0}]"""
self.cio_paths = []
self.cio_values = []
self.dict_cio_values = None
#
self.df_ofs_ttt = pd.DataFrame(columns=['src_cell', 'offset', 'TTT'])
self.df_cio = pd.DataFrame(columns=['src_cell', 'nbr_cell', 'CIO'])
self.get_ofs_ttt_path()
self.get_cio_path()
#
self.Groups = None
# self.cnt = 0
# keep initial group definition for incremental changes
if self.Groups is None:
self.Groups = copy.deepcopy(dict_cfg['Groups'])
'''define traffic mask of 24 hours'''
self.group24 = [0.8, 0.65, 0.4, 0.15, 0.2, 0.3, 0.6, 0.8, 0.9, 0.8, 1.2, 1.3,
1.5, 1.8, 2.0, 1.7, 1.8, 1.5, 1.4, 1.5, 1.1, 1.0, 0.9, 0.8]
def get_path_values(self, tree, path, indx=0):
"""walks down a json tree and stores all possible paths and values of a Season configuration
:param tree: dictionary containing json tree
:param path: path specifier
:param indx: index level
"""
if indx < len(path):
# not the final path end reached continue walk down
if isinstance(path[indx], str):
# print(path[indx])
if path[indx] == '*':
# wildcard found iterate through set of options
for k in tree.keys():
# print(k)
new_path = path.copy()
new_path[indx] = k
# recursive walk down on next level of tree
self.get_path_values(tree[k], new_path, indx + 1)
else:
# recursive walk down on next level of tree
self.get_path_values(tree[path[indx]], path, indx + 1)
else:
# final end of path reached keep full path string and value in separate arrays
self.cfg_paths.append(path)
self.cfg_values.append(tree)
def get_ofs_ttt_path(self):
self.cfg_paths = []
self.cfg_values = []
self.get_path_values(self.dict_cfg['Sites'], self.ofs_ttt_search_path)
self.ofs_ttt_paths = copy.deepcopy(self.cfg_paths)
self.ofs_ttt_values = copy.deepcopy(self.cfg_values)
self.df_ofs_ttt['src_cell'] = [n[0] + '[' + n[2] + '][' + n[4] + ']' for n in self.ofs_ttt_paths]
self.df_ofs_ttt['offset'] = [x[0]['offset'] for x in self.ofs_ttt_values]
self.df_ofs_ttt['TTT'] = [x[0]['TTT'] for x in self.ofs_ttt_values]
def get_cio_path(self):
self.cfg_paths = []
self.cfg_values = []
self.get_path_values(self.dict_cfg['Sites'], self.cio_search_path)
self.cio_paths = copy.deepcopy(self.cfg_paths)
self.cio_values = copy.deepcopy(self.cfg_values)
ls_src_cells = [n[0] + '[' + n[2] + '][' + n[4] + ']' for n in self.cio_paths]
self.dict_cio_values = {k: v for k, v in zip(ls_src_cells, self.cio_values)}
#
ls_df_cio = []
# It returns the first element of each list, then 2nd element of each list, etc.
# This is a trick to consider the two lists as key and data to create a dictionary.
for n, ls_nbr in zip(self.cio_paths, self.cio_values):
sub_df = pd.DataFrame(columns=['src_cell', 'nbr_cell', 'CIO'])
ls_nbr_cell = [d['other_cell_trx'] for d in ls_nbr]
ls_cio = [d['offset'] for d in ls_nbr]
sub_df['nbr_cell'] = ls_nbr_cell
sub_df['CIO'] = ls_cio
sub_df['src_cell'] = n[0] + '[' + n[2] + '][' + n[4] + ']'
ls_df_cio.append(sub_df)
self.df_cio = pd.concat(ls_df_cio)
"""E.g., cio_values = [{"trigger_type": "A3", "other_cell_trx": "site03[0][A]", "offset": 0},
{"trigger_type": "A3", "other_cell_trx": "site03[2][A]", "offset": 0}]"""
def get_cfg(self, ofs_ttt_values=None, cio_values=None, timestamp=None):
""" get new Season configuration for given set of values
:param values: values: overwrites internal configuration values
:param timestamp: 24 hour seasonality to be used for group size modification
:return: new Season configuration
"""
# get path values to per cell offset and ttt
my_ofs_ttt_values = self.ofs_ttt_values if ofs_ttt_values is None else ofs_ttt_values
cfg_ofs_ttt = {}
for i in range(len(self.ofs_ttt_paths)):
self.get_path_config(cfg_ofs_ttt, self.ofs_ttt_paths[i], my_ofs_ttt_values[i])
# print('cfg ofs ttt:', cfg_ofs_ttt)
# get path values to per cell cio (to all neighbor list of the src cell)
my_cio_values = self.cio_values if cio_values is None else cio_values
cfg_cio = {}
for i in range(len(self.cio_paths)):
self.get_path_config(cfg_cio, self.cio_paths[i], my_cio_values[i])
# print('cfg cio:', cfg_cio)
dict_merge(cfg_ofs_ttt, cfg_cio)
# print(cfg_ofs_ttt)
cfg = {'Sites': cfg_ofs_ttt}
# change group sizes acc. to group24 parameter - adds 24h seasonality
if len(self.group24) == 24 and timestamp is not None:
new_groups = copy.deepcopy(self.Groups)
# take time tick 0 as 0:00 a.m.
indx = int((timestamp // 3600) % 24)
print('[INFO]: change traffic mask config, hour of the day', indx)
for group in new_groups.values():
# modify all groups acc. group24 parameter
group['parameters']['group_size'] = int(group['parameters']['group_size'] * self.group24[indx])
cfg['Groups'] = new_groups
return cfg
def get_path_config(self, config, path, value):
"""set value of given configuration for path path and value
:param config: Season configuration
:param path: actual path
:param value: actual value
:return: None
"""
if len(path) == 1:
# final end of path reached, set value
config[path[0]] = value
else:
# intermediate stage reached
if path[0] not in config.keys():
# generate empty dicts for all possible keys
config[path[0]] = {}
# walk down next level on path
self.get_path_config(config[path[0]], path[1:], value)
class ReplayBuffer:
def __init__(self, capacity=10000):
self.buffer = deque(maxlen=capacity)
self.min_replay_size = 200 # minimum replay size for start training
self.batch_size = 20
def store(self, state, action, reward, next_state):
self.buffer.append([state, action, reward, next_state])
def sample(self):
sample = random.sample(self.buffer, self.batch_size)
states, actions, rewards, next_states = map(np.asarray, zip(*sample))
states = np.array(states).reshape(self.batch_size, -1)
next_states = np.array(next_states).reshape(self.batch_size, -1)
return states, actions, rewards, next_states
def size(self):
return len(self.buffer)
class Actor:
def __init__(self, state_dim, action_dim, action_bound):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound #Action bound is normalized to 1. We then multiply each output layer to proper coefficients.
#todo: multiply proper coefficients as mentioned above.
self.actor_lr = 0.0005 # input
self.model = self.nn_model()
self.opt = tf.keras.optimizers.Adam(self.actor_lr)
def nn_model(self):
return tf.keras.Sequential(
[
Input((self.state_dim,)),
Dense(32, activation="relu"),
Dense(32, activation="relu"),
Dense(self.action_dim, activation="tanh"),
# Lambda(lambda x: x * self.action_bound),
]
)
def train(self, states, q_grads):
with tf.GradientTape() as tape:
grads = tape.gradient(
self.model(states), self.model.trainable_variables, -q_grads
)
self.opt.apply_gradients(zip(grads, self.model.trainable_variables))
def predict(self, state):
return self.model.predict(state)
def get_action(self, state):
state = np.reshape(state, [1, self.state_dim])
return self.model.predict(state)[0]
class Critic:
def __init__(self, state_dim, action_dim):
self.state_dim = state_dim
self.action_dim = action_dim
self.model = self.nn_model()
self.critic_lr = 0.001 # input
self.opt = tf.keras.optimizers.Adam(self.critic_lr)
def nn_model(self):
state_input = Input((self.state_dim,))
s1 = Dense(64, activation="relu")(state_input)
s2 = Dense(32, activation="relu")(s1)
action_input = Input((self.action_dim,))
a1 = Dense(32, activation="relu")(action_input)
c1 = concatenate([s2, a1], axis=-1)
c2 = Dense(16, activation="relu")(c1)
output = Dense(1, activation="linear")(c2)
return tf.keras.Model([state_input, action_input], output)
def predict(self, inputs):
return self.model.predict(inputs)
def q_gradients(self, states, actions):
actions = tf.convert_to_tensor(actions)
with tf.GradientTape() as tape:
tape.watch(actions)
q_values = self.model([states, actions])
q_values = tf.squeeze(q_values)
return tape.gradient(q_values, actions)
def compute_loss(self, v_pred, td_targets):
mse = tf.keras.losses.MeanSquaredError()
return mse(td_targets, v_pred)
def train(self, states, actions, td_targets):
with tf.GradientTape() as tape:
v_pred = self.model([states, actions], training=True)
assert v_pred.shape == td_targets.shape
loss = self.compute_loss(v_pred, tf.stop_gradient(td_targets))
grads = tape.gradient(loss, self.model.trainable_variables)
self.opt.apply_gradients(zip(grads, self.model.trainable_variables))
return loss
def get_action(self, state):
state = np.reshape(state, [1, self.state_dim])
return self.model.predict(state)[0]
class RlAgent:
def __init__(self):
self.configs = [] # list of ho parameters for all trx's along time
self.reports = [] # list of reports
self.rep_new_state = [] # collection of reports to compute the new state (after a new config)
self.rep_state = [] # collection of reports to compute the state (before a new config)
self.num_train = 96*5 # 96*14 two weeks of training
self.num_test = 50 # 96 days of the testing
# if 1 sample per 15 min (900s simulation time), 24 samples = 6h, train model every 6h, and target every day
self.num_update_model = 12 # 24: no. of samples collected to train model with replay experience
self.num_update_target = 4*12 # 4*24: no. of samples collected to update the target model
self.num_train_per_update = 30 # input
self.num_explore = 50
self.ls_ep_reward = []
self.ep_idx = 0
self.gamma = 0.99 # input
self.tau = 0.05 # input
self.min_TTT = 0.004
self.max_TTT = 5.12
self.min_CIO = -6
self.max_CIO = 6
# each model parameters
self.gamma = 0.7 # discount factor
self.batch_size = 8
#
self.current_cfg = None # current cfg as a class
self.timestamp = 0
self.ls_realtime = [time()]
'''get dictionary of cells and their corresponding neighbors '''
self.ls_cells = []
self.dict_neighbor_cells = None
self.path_to_site_json = 'C:/Users/Administrator/OneDrive - Nokia/Documents\Software/Season-2020d/SEASON II' \
' 2020d/SON_v2/config/scenario_config/' \
'Helsinki_test-Sites.json'
self.path_to_cfg_json = 'C:/Users/Administrator/OneDrive - Nokia/Documents/Software/Season-2020d/SEASON II 2020d/SON_v2/config/scenario_config' \
'/Helsinki_MRO_test_QL.json'
self.get_neighbor_cells()
'''DDPG to change TTT, and cell pair CIO'''
self.src_cell = 'site04[0][A]' # only get kpis of src cell and its neighboring cell
self.nbr_cells = self.dict_neighbor_cells[self.src_cell]
self.src_nbr_cells = [self.src_cell] + self.nbr_cells
self.norm_num_ues = self.get_group_size() # number of ues for the normalization of num_connected ues in state
'''reward'''
self.ls_reward_kpi = ['early_handovers_count', 'wrong_cell_handovers_count', 'pingpong_handovers_count',
'late_handovers_count', 'total_number_of_ues']
self.ls_state_kpi = ['number_of_connected_ues', 'actual_load']
self.weight_kpi = [0.25, 0.15, 0.05, 0.5]
self.weight_cell = [0.4] + [0.6/len(self.nbr_cells)]*len(self.nbr_cells)
''' State: load and num ues for src and nbr cells'''
self.state_dim = 2 * (len(self.nbr_cells) + 1) # load and number of ues for src and neighboring cells
''' Action space: HO parameters '''
# self.TTT_pool = [0.128, 0.512, 1.024, 2.56] # in sec
# self.CIO_pool = [int(x) for x in [-5, -2, 0, 2, 5]] # in dB
# ls_config = [self.TTT_pool] + [self.CIO_pool] * len(self.nbr_cells)
# self.permu_pool = list(itertools.product(*ls_config))
self.action_dim = 2*(len(self.nbr_cells)+1) + (len(self.nbr_cells)+1)
self.action_bound = 1
''' DDDPG model initialization'''
self.actor = Actor(self.state_dim, self.action_dim, self.action_bound)
self.critic = Critic(self.state_dim, self.action_dim)
self.target_actor = Actor(self.state_dim, self.action_dim, self.action_bound)
self.target_critic = Critic(self.state_dim, self.action_dim)
self.update_target()
self.current_action = None
self.buffer = ReplayBuffer()
self.cnt_sample = 0
self.save_path = 'Helsinki_SC-DDPG_040B-05-20.pickle' # single cell DDPG
'''default HO parameters for other cells, HO parameter path'''
self.default_offset = int(0)
self.default_TTT = 0.512
self.default_CIO = int(0)
self.Offset_TTT_path = '*.cells.*.transceivers.*.HO_triggers'
# note that 'HO_triggers' is a list of HO parameters, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]
self.CIO_path = '*.cells.*.transceivers.*.cell_individual_HO_offset'
self.last_msg = None
# 'cell_individual_HO_offset' is a list of dictionaries, each element indicates CIO to a neighboring cell, e.g.
# [{"trigger_type": "A3",
# "other_cell_trx": "site03[0][A]",
# "offset": 0},
# {"trigger_type": "A3",
# "other_cell_trx": "site03[2][A]",
# "offset": 0
# }]
def update_target(self):
actor_weights = self.actor.model.get_weights()
t_actor_weights = self.target_actor.model.get_weights()
critic_weights = self.critic.model.get_weights()
t_critic_weights = self.target_critic.model.get_weights()
for i in range(len(actor_weights)):
t_actor_weights[i] = (
self.tau * actor_weights[i] + (1 - self.tau) * t_actor_weights[i]
)
for i in range(len(critic_weights)):
t_critic_weights[i] = (
self.tau * critic_weights[i] + (1 - self.tau) * t_critic_weights[i]
)
self.target_actor.model.set_weights(t_actor_weights)
self.target_critic.model.set_weights(t_critic_weights)
def get_td_target(self, rewards, q_values):
targets = np.asarray(q_values)
for i in range(q_values.shape[0]):
# if dones[i]:
# targets[i] = rewards[i]
# else:
targets[i] = self.gamma * q_values[i]
return targets
def replay_experience(self):
for _ in range(self.num_train_per_update):
states, actions, rewards, next_states = self.buffer.sample()
target_q_values = self.target_critic.predict(
[next_states, self.target_actor.predict(next_states)]
)
td_targets = self.get_td_target(rewards, target_q_values)
# print("=========================TRAINING=============================")
# print("=========================CriticNet=============================")
self.critic.train(states, actions, td_targets)
s_actions = np.ones([self.batch_size, self.action_dim])
for i in range(self.batch_size):
s_actions[i] = self.actor.predict(states[i, :].reshape(1, 12))
s_grads = self.critic.q_gradients(states, s_actions)
grads = np.array(s_grads).reshape((-1, self.action_dim))
states = states.astype('float32')
grads = grads.astype('float32')
# print("=========================TRAINING=============================")
# print("=========================ActorNet=============================")
self.actor.train(states, grads)
self.update_target()
def get_neighbor_cells(self):
dict_sites = json.load(open(self.path_to_site_json))
ls_key = []
ls_neighbors = []
for k, v in dict_sites.items():
for k_cell, v_cell in v['cells'].items():
for k_sec, v_sec in v_cell['transceivers'].items():
ls_key.append(k + '[' + k_cell + '][' + k_sec + ']')
ls_neighbors.append(v_sec['neighbour_relations'])
self.dict_neighbor_cells = {k: v for k, v in zip(ls_key, ls_neighbors)}
self.ls_cells = list(self.dict_neighbor_cells.keys())
def get_group_size(self):
"""
get the average number of ues per site for the state normalization
:return:
"""
dict_cfg = json.load(open(self.path_to_cfg_json))
ave_num_ue = 0
for k, v in dict_cfg['Groups'].items():
ave_num_ue += v['parameters']['group_size']
# average number of ues in the whole playground/number of sites
ave_num_ue = ave_num_ue/len(self.dict_neighbor_cells)
return ave_num_ue
def add_config(self, dict_cfg):
""" add new configurtaion to the list
:param dict_cfg: dictionary of actual season configuration
:return:
"""
cfg = Configuration(dict_cfg, self.Offset_TTT_path.split('.'), self.CIO_path.split('.'), self.dict_neighbor_cells)
self.configs.append([self.timestamp, cfg.df_ofs_ttt, cfg.df_cio])
# self.cfg_timestamp.append(self.timestamp) # this is the timestamp of the last KPI report
print('[INFO] number of collected configurations: ', len(self.configs))
self.current_cfg = cfg
self.last_msg = 'config'
def add_report(self, dict_rpt):
# write report dict in a sub df
self.ls_realtime.append(time())
print('[INFO] real time interval between the reports: ', self.ls_realtime[-1] - self.ls_realtime[-2])
# simulator timestamp
self.timestamp = dict_rpt['kpi_report']['all_cell_trx_kpis']['timestamp']
#
ls_kpi_names = dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_names']
ls_kpi_values = dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_values']
sub_df = pd.DataFrame(columns=['timestamp'] + ls_kpi_names)
num_trx = len(dict_rpt['kpi_report']['all_cell_trx_kpis']['kpi_values'])
for idx_trx in range(num_trx):
ls_trx_values = [self.timestamp] + ls_kpi_values[idx_trx]
sub_df.at[idx_trx, :] = ls_trx_values
self.reports.append(sub_df)
self.last_msg = 'report'
print('[INFO] number of collected report: ', len(self.reports))
self.rep_new_state.append(sub_df)
def add_replay_sample(self):
"""
- state, action, reward, next_state
in this case we do not have episode, continuous training with one environment, we do not reset the environment
:return:
"""
'''action'''
action = self.current_action # index of the action
'''state'''
# get state (before taking the action): number of ues and actual load for src and nbr stations
state = self.get_ddpg_state(self.rep_state[-1])
'''new_state'''
next_state = self.get_ddpg_state(self.rep_new_state[-1])
'''reward'''
# get cost: too_early, pingpong, wrong_cell, too_late/ue/sec
# need to substract the counts from the previous time slot
df_rwd = self.reports[-1].copy()
df_rwd_last = self.reports[-2].copy()
for colname in self.ls_reward_kpi[:-1]:
df_rwd[colname] = df_rwd[colname].values - df_rwd_last[colname].values
vec_kpi = np.concatenate([df_rwd.loc[df_rwd['unique_name'] == n, self.ls_reward_kpi].values
for n in self.src_nbr_cells])
# todo: check, there should be no negative values since counts are accumulated, but I can find negative changes
# in reports, why?
vec_kpi = vec_kpi.clip(min=0)
diff_time = (df_rwd['timestamp'].loc[0] - df_rwd_last['timestamp'].loc[0])/3600 # in hour
# divide the the first 4 columns with the last volumn and the time difference between the two reports, since
# they are accumulated counts
# in case number of the ue is 0, division by zero problem: add a small offset
vec_cost = (vec_kpi[:, :4].T/(vec_kpi[:, 4].T+1e-6))/diff_time # counts/ue/simulation sec
# vec_cost[[0,1, 2, 3] :]: early, wrong, pingpong, late
# vec_cost[:, [0, 1,2,3]]: src, nbr0, nbr1, nbr2
# multiply weights to kpis and cells
vec_reward = - vec_cost # define reward as the negative cost
weighted_reward = np.diag(np.array(self.weight_kpi))@vec_reward@np.diag(np.array(self.weight_cell))
reward = weighted_reward.mean()
self.ls_ep_reward.append(reward)
self.buffer.store(state, action, reward, next_state)
print('[Info]: add replay sample, action index is {} and reward is {}'.format(action, reward))
self.cnt_sample += 1
print("state <====", state)
print("action <====", action)
print("reward <====", reward)
print("next state <====", next_state)
def get_ddpg_state(self, df_rep):
vec_state = np.concatenate([df_rep.loc[df_rep['unique_name'] == n,
self.ls_state_kpi].values for n in self.src_nbr_cells])
vec_state[:, 0] = vec_state[:, 0] / self.norm_num_ues
return vec_state.flatten().astype('float32')
def next_config(self, timestamp=None):
"""
:param timestamp:
:return:
"""
# when defines a next config, the state before the config becomes state, and waiting for the states after to be
# the new state
self.rep_state = self.rep_new_state.copy()
self.rep_new_state = []
'''
train and update the model when:
1) enough samples in buffer is collected
2) collected sample (configurations) smaller than the number of trainings
'''
if (self.buffer.size() >= self.buffer.min_replay_size) & (self.cnt_sample < self.num_train):
if self.cnt_sample % self.num_update_model == 0:
self.replay_experience()
ep_reward = np.array(self.ls_ep_reward).mean()
# from the previous episode
print(f"Episode#{self.ep_idx} reward:{ep_reward}")
tf.summary.scalar("episode_reward", ep_reward, step=self.ep_idx)
self.ep_idx += 1
self.ls_ep_reward = []
if self.cnt_sample % self.num_update_target == 0:
self.update_target()
'''decide the next config'''
# note that 'HO_triggers' is a list of dictionaries, e.g., [{'event_type': 'A3', 'offset': 3, 'TTT': 1}]
'''get TTT and CIO_s,t and CIO_t,s'''
if self.buffer.size() > self.num_explore:
stt = self.get_ddpg_state(self.rep_state[-1])
action = self.actor.get_action(stt)
print("state:", stt)
print("state dim:", len(stt))
print("Original Action:", action)
else:
action = (np.random.random(self.action_dim)-0.5) * (self.max_CIO - self.min_CIO)
action[0] = np.random.random(1) * self.max_TTT
self.current_action = action
# action_value = self.permu_pool[action]
'''assign default offset and TTT values'''
df_ofs_ttt = self.configs[-1][1].copy(deep=True)
df_ofs_ttt['offset'] = self.default_offset
df_ofs_ttt['TTT'] = self.default_TTT
'''assign TTT to the source cell'''
#df_ofs_ttt.loc[df_ofs_ttt['src_cell'] == self.src_cell, 'TTT'] = float(tf.clip_by_value(action[0], self.min_TTT, self.max_TTT))
df_ofs_ttt.loc[df_ofs_ttt['src_cell'] == self.src_cell, 'TTT'] = float(np.interp(action[0], (-1, 1), (self.min_TTT, self.max_TTT)))
print("TTT:", df_ofs_ttt.loc[df_ofs_ttt['src_cell'] == self.src_cell, 'TTT'])
# print('[INFO] next config ttt = ', action_value[0])
ls_ofs_ttt = [[{'event_type': 'A3', 'offset': int(o), 'TTT': float(t)}]
for o, t in zip(df_ofs_ttt['offset'].values, df_ofs_ttt['TTT'].values)]
'''initialize all cells CIOs with default CIO value: after receiving the first configuration'''
if len(self.configs) == 1:
# set all cio to default values
# [{"trigger_type": "A3",
# "other_cell_trx": "site03[0][A]",
# "offset": 0},
# {"trigger_type": "A3",
# "other_cell_trx": "site03[2][A]",
# "offset": 0
# }]
for k, v in self.current_cfg.dict_cio_values.items():
for i in range(len(self.current_cfg.dict_cio_values[k])):
self.current_cfg.dict_cio_values[k][i]['offset'] == self.default_CIO
'''assign CIOs for every pair of (source cell, target cell)'''
# print('[INFO] next config src cell cio = ', action_value[1:])
for i in range(len(self.current_cfg.dict_cio_values[self.src_cell])):
#self.current_cfg.dict_cio_values[self.src_cell][i]['offset'] = float(tf.clip_by_value(action[i+1], self.min_CIO, self.max_CIO))
self.current_cfg.dict_cio_values[self.src_cell][i]['offset'] = float(np.interp(action[i+1], (-1, 1), (self.min_CIO, self.max_CIO)))
print("CIO instance:", self.current_cfg.dict_cio_values[self.src_cell][i]['offset'])
# action_value[0] is TTT, CIO values starts from action_value[1:]
ls_cio = list(self.current_cfg.dict_cio_values.values())
print("CIO values:", ls_cio)
return self.current_cfg.get_cfg(ofs_ttt_values=ls_ofs_ttt, cio_values=ls_cio, timestamp=timestamp)
def save_results(self):
pickle.dump((self.configs, self.reports, self.buffer.buffer), open(self.save_path, 'wb'))
class ThreadedClient(threading.Thread):
def __init__(self, host, port):
threading.Thread.__init__(self)
# set up queues
self.receive_q = queue.Queue()
self.send_q = queue.Queue()
self.msgs = ''
self.flag_run = True
# self.last_msg = 'report'
# declare instance variables
self.host = host
self.port = port
# connect to socket
self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.s.connect((self.host, self.port))
self.s.settimeout(.1)
self.agent = RlAgent()
# self.current_config = None
# self.report_cnt = 0
'''LISTEN to season, but if send_q has new config, send to season'''
def listen(self):
""" listen to season and add the config and report messages in the queue
:return:
"""
while self.flag_run:
try:
# if there is a updated configuration, then push config to season
if not self.send_q.empty():
print('[INFO] send a new configuration...')
self.send_config()
# print('listening...')
m = self.s.recv(26240000).decode("utf-8").split('\0')
if 'config' in m[0][:20]:
print('[INFO] RECEIVED: config head message...')
elif 'kpi_report' in m[0][:20]:
print('[INFO] RECEIVED: KPI head message...')
if ('kpi_report' in m[0][:20]) or ('config' in m[0][:20]):
self.msgs = m[0]
else:
self.msgs += m[0]
try:
msg_json = json.loads(self.msgs)
# put all kpi_reports in the queue
self.receive_q.put(msg_json)
# print('report queue size: ', self.receive_q.qsize())
self.msgs = ''
except:
pass
except socket.timeout:
pass
def start_listen(self):
t_listen = threading.Thread(target=self.listen)
t_listen.start()
print('started listen')
'''RUN AGENT: write received messages to report and config, decide next config, put in to the send_q queue'''
def run_agent(self):
# keep reading self.receive_q and collect the report into a data frame
while self.flag_run:
try:
# get report dict from the queue
dict_msg = self.receive_q.get()
if list(dict_msg.keys())[0] == 'kpi_report':
"""add report to the RL Agent"""
if self.agent.last_msg == 'config':
flag_add_sample = True
print("========ADD Reply Sample========")
else:
flag_add_sample = False
self.agent.add_report(dict_msg)
if flag_add_sample & (len(self.agent.configs) >= 2):
self.agent.add_replay_sample()
if self.agent.cnt_sample <= self.agent.num_train + self.agent.num_test:
next_config = self.agent.next_config()
self.send_q.put(next_config)
elif self.agent.cnt_sample % 200 == 0:
self.agent.save_results()
else:
self.flag_run = False
self.agent.save_results()
elif list(dict_msg.keys())[0] == 'config':
self.agent.add_config(dict_msg['config'])
except queue.Empty:
pass
def start_run_agent(self):
t_agent = threading.Thread(target=self.run_agent)
t_agent.start()
print('started run agent')
def send_config(self):
next_config = self.send_q.get()
cmd = json.dumps(next_config) + '\0'
self.s.send(cmd.encode())
if __name__ == '__main__':
port = 8000
address = 'localhost'
TC = ThreadedClient(address, port)
logdir = os.path.join('logs', 'DDPG', TC.agent.src_cell, datetime.now().strftime("%Y%m%d-%H%M%S"))
print(f"Saving training logs to:{logdir}")
writer = tf.summary.create_file_writer(logdir)
with writer.as_default():
TC.start()
print('Server started, port: ', port)
TC.start_listen()
TC.start_run_agent()