-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathinference.py
123 lines (106 loc) · 6.47 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from time import strftime
import os, sys
from argparse import ArgumentParser
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from third_part.GFPGAN.gfpgan import GFPGANer
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
import warnings
warnings.filterwarnings("ignore")
def main(args):
pic_path = args.source_video
audio_path = args.driven_audio
enhancer_region = args.enhancer
save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S"))
os.makedirs(save_dir, exist_ok=True)
device = args.device
batch_size = args.batch_size
current_code_path = sys.argv[0]
current_root_path = os.path.split(current_code_path)[0]
os.environ['TORCH_HOME'] = os.path.join(current_root_path, args.checkpoint_dir)
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
# init model
print(path_of_net_recon_model)
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
print(audio2pose_checkpoint)
print(audio2exp_checkpoint)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device)
print(free_view_checkpoint)
print(mapping_checkpoint)
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, facerender_yaml_path, device)
restorer_model = GFPGANer(model_path='checkpoints/GFPGANv1.3.pth', upscale=1, arch='clean',
channel_multiplier=2, bg_upsampler=None)
enhancer_model = FaceEnhancement(base_dir='checkpoints', size=512, model='GPEN-BFR-512', use_sr=False,
sr_model='rrdb_realesrnet_psnr', channel_multiplier=2, narrow=1, device=device)
# crop image and extract 3dmm from image
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
print('3DMM Extraction for source image')
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir)
if first_coeff_path is None:
print("Can't get the coeffs of the input")
return
# audio2ceoff
batch = get_data(first_coeff_path, audio_path, device)
coeff_path = audio_to_coeff.generate(batch, save_dir)
# coeff2video
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, device)
tmp_path, new_audio_path, return_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info,
restorer_model, enhancer_model, enhancer_region)
torch.cuda.empty_cache()
if args.use_DAIN:
import paddle
from src.dain_model import dain_predictor
paddle.enable_static()
predictor_dian = dain_predictor.DAINPredictor(args.dian_output, weight_path=args.DAIN_weight,
time_step=args.time_step,
remove_duplicates=args.remove_duplicates)
frames_path, temp_video_path = predictor_dian.run(tmp_path)
paddle.disable_static()
save_path = return_path[:-4] + '_dain.mp4'
command = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (temp_video_path, new_audio_path, save_path)
os.system(command)
os.remove(tmp_path)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--driven_audio", default='./examples/driven_audio/bus_chinese.wav',
help="path to driven audio")
parser.add_argument("--source_video", default='./examples/source_image/input.mp4',
help="path to source video")
parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output")
parser.add_argument("--result_dir", default='./results', help="path to output")
parser.add_argument("--batch_size", type=int, default=1, help="the batch size of facerender")
parser.add_argument("--enhancer", type=str, default='lip', help="enhaner region:[none,lip,face] \
none:do not enhance; \
lip:only enhance lip region \
face: enhance (skin nose eye brow lip) region")
parser.add_argument("--cpu", dest="cpu", action="store_true")
parser.add_argument("--use_DAIN", dest="use_DAIN", action="store_true",
help="Depth-Aware Video Frame Interpolation")
parser.add_argument('--DAIN_weight', type=str, default='./checkpoints/DAIN_weight',
help='Path to model weight')
parser.add_argument('--dian_output', type=str, default='dian_output', help='output dir')
parser.add_argument('--time_step', type=float, default=0.5, help='choose the time steps')
parser.add_argument('--remove_duplicates', action='store_true', default=False,
help='whether to remove duplicated frames')
args = parser.parse_args()
if torch.cuda.is_available() and not args.cpu:
args.device = "cuda"
else:
args.device = "cpu"
main(args)