-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdisplay_tools.m
234 lines (208 loc) · 11.7 KB
/
display_tools.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
classdef display_tools
methods (Static)
function view_lens(Lens, Data, display_line, viewplane)
if mod(display_line,2) == 0
display_line = display_line+1;
end
if display_line > size(Data.X_1{1},2)
display_line = size(Data.X_1{1},2);
end
switch viewplane
case {'3D',3}
display_line_position_x = linspace(-Lens.aperture/2,Lens.aperture/2,display_line);
display_line_position_y = linspace(-Lens.aperture/2,Lens.aperture/2,display_line);
[dlpx, dlpy] = meshgrid(display_line_position_x,display_line_position_y);
dlpx = reshape(dlpx,1,numel(dlpx)); dlpy = reshape(dlpy,1,numel(dlpy));
index_x = []; index_y = [];
for i = 1:numel(dlpx)
id_x = find(Data.X_1{1}(2,:) == dlpx(i)); id_y = find(Data.Y_1{1}(2,:) == dlpy(i));
index_x = [index_x, id_x]; index_y = [index_y, id_y];
end
index = intersect(index_x,index_y);
figure('units','normalized','outerposition',[0 0 1 1],'color','k')
for n = 1:numel(Lens.distance)
if Lens.material(n)==1
line_color = 'g'; lin_wid = 0.1;
else
line_color = [.5 .5 .5]; lin_wid = 1;
end
plot3(Data.Z_1{n}(:,index)-sum(Lens.distance(1:Lens.surface_num)),Data.X_1{n}(:,index),Data.Y_1{n}(:,index), ...
'color',line_color,'linewidth',lin_wid)
hold on
end
xlim([-sum(Lens.distance(1:Lens.surface_num)),sum(Lens.distance(Lens.surface_num+1:end))])
ylim([-Lens.aperture*1.2/2,Lens.aperture*1.2/2])
axis equal; grid on; xlabel('z (mm)'); ylabel('x (mm)'); zlabel('y (mm)'); title('View Lens')
%% Lens Drawing
x = linspace(-Lens.aperture*1.2/2,Lens.aperture*1.2/2,1001); y = linspace(-Lens.aperture*1.2/2,Lens.aperture*1.2/2,1001);
[x, y] = meshgrid(x,y);
r = sqrt(x.^2+y.^2);
x(r>Lens.aperture*1.2/2) = nan; y(r>Lens.aperture*1.2/2) = nan; r(r>Lens.aperture*1.2/2) = nan;
spher_z = @(r,R) r.^2./(R*(1+sqrt(1-(r.^2/R.^2)))); % Spherical surface
c(:,:,1) = ones(size(x,1));c(:,:,2) = ones(size(x,1));c(:,:,3) = ones(size(x,1)); % color for surf
for i = 1:Lens.surface_num
z = spher_z(r,Lens.y_radius(i));
surf(z-sum(Lens.distance(1:Lens.surface_num))+sum(Lens.distance(1:i)),x,y,c,...
'EdgeColor', 'none', 'FaceLighting','phong', 'FaceColor', 'interp', 'FaceAlpha', 0.5, ...
'AmbientStrength', 0., 'SpecularStrength', 1 );
hold on
end
hold off
case {'xz','XZ',1}
off_axis_data = Data.Y_1;
on_axis_data = Data.X_1;
label_name = 'x';
propagate_axis_data = Data.Z_1;
on_axis_index = find(off_axis_data{1}(2,:)==0); % find on-axis data index
Lens.aperture_radius = Lens.aperture/2;
display_line_position = linspace(-Lens.aperture_radius,Lens.aperture_radius,display_line);
display_index = [];
for n = 1:display_line
inx = find(on_axis_data{1}(2,:) == display_line_position(n)); % find data
display_index = [display_index,inx];
end
index = intersect(on_axis_index,display_index);
figure('units','normalized','outerposition',[0 0 1 1],'color','k')
for n = 1:numel(Lens.distance)
if Lens.material(n)==1
line_color = 'g';
lin_wid = 0.5;
else
line_color = [.9 .9 .9];
lin_wid = 3;
end
plot(propagate_axis_data{n}(:,index)-sum(Lens.distance(1:Lens.surface_num)),on_axis_data{n}(:,index), ...
'color',line_color,'linewidth',lin_wid)
hold on
end
axis equal; grid on; xlabel('z (mm)'); ylabel([label_name,' (mm)']); title('View Lens')
xlim([-sum(Lens.distance(1:Lens.surface_num)),sum(Lens.distance(Lens.surface_num+1:end))])
ylim([-Lens.aperture*1.2/2,Lens.aperture*1.2/2])
%% Lens Drawing
on_axis = linspace(-Lens.aperture*1.2/2,Lens.aperture*1.2/2,1001);
spher_z = @(r,R) r.^2./(R*(1+sqrt(1-(r.^2/R.^2)))); % Spherical surface
for i = 1:Lens.surface_num
z = spher_z(on_axis,Lens.y_radius(i));
plot(z-sum(Lens.distance(1:Lens.surface_num))+sum(Lens.distance(1:i)),on_axis,':','color','w')
hold on
end
hold off
case {'yx','YZ',2}
off_axis_data = Data.X_1;
on_axis_data = Data.Y_1;
label_name = 'y';
propagate_axis_data = Data.Z_1;
on_axis_index = find(off_axis_data{1}(2,:)==0); % find on-axis data index
Lens.aperture_radius = Lens.aperture/2;
display_line_position = linspace(-Lens.aperture_radius,Lens.aperture_radius,display_line);
display_index = [];
for n = 1:display_line
inx = find(on_axis_data{1}(2,:) == display_line_position(n)); % find data
display_index = [display_index,inx];
end
index = intersect(on_axis_index,display_index);
figure('units','normalized','outerposition',[0 0 1 1],'color','k')
for n = 1:numel(Lens.distance)
if Lens.material(n)==1
line_color = 'g';
lin_wid = 0.5;
else
line_color = [.9 .9 .9];
lin_wid = 3;
end
plot(propagate_axis_data{n}(:,index)-sum(Lens.distance(1:Lens.surface_num)),on_axis_data{n}(:,index), ...
'color',line_color,'linewidth',lin_wid)
hold on
end
axis equal; grid on; xlabel('z (mm)'); ylabel([label_name,' (mm)']); title('View Lens')
xlim([-sum(Lens.distance(1:Lens.surface_num)),sum(Lens.distance(Lens.surface_num+1:end))])
ylim([-Lens.aperture*1.2/2,Lens.aperture*1.2/2])
%% Lens Drawing
on_axis = linspace(-Lens.aperture*1.2/2,Lens.aperture*1.2/2,1001);
spher_z = @(r,R) r.^2./(R*(1+sqrt(1-(r.^2/R.^2)))); % Spherical surface
for i = 1:Lens.surface_num
z = spher_z(on_axis,Lens.y_radius(i));
plot(z-sum(Lens.distance(1:Lens.surface_num))+sum(Lens.distance(1:i)),on_axis,':','color','w')
hold on
end
hold off
end
pause(0.01)
end
function spot_diagram(Data)
figure('color','k')
plot(Data.X_1{end}(2,:),Data.Y_1{end}(2,:),'.')
axis equal; title('Spot Diagram')
xlabel('x (mm)'); ylabel('y (mm)')
pause(0.01)
end
function transmission_plane(trans_plane_data)
figure('color','k')
pcolor(trans_plane_data.x,trans_plane_data.y,trans_plane_data.OP-min(trans_plane_data.OP,[],'all'))
title('Transmission Optical Path Difference')
xlabel('x (mm)'); ylabel('y (mm)')
axis equal; shading flat; colorbar; colormap('jet')
pause(0.01)
end
function line_spread_function(LSF_data,diffra_limit)
figure('color','k')
plot(LSF_data.Monitor_y,LSF_data.Power_normalize,'linewidth',.5,'color',[0.93,0.69,0.13])
hold on
plot(diffra_limit.y,diffra_limit.I,':','linewidth',.5,'color','w')
xlabel('x (mm)'); ylabel('Normalize Intensity')
title('Line Spread Function',['Strehl Ratio = ',num2str(LSF_data.Strehl_ratio)])
grid on
ax = gca; ax.GridColor = [0.32 0.32 0.32];
pause(0.01)
end
function point_spread_function(Switch,PSF_data,trans_plane_data,focal_plane_position)
if Switch(1)==1
plot_z = PSF_data.Monitor_z-trans_plane_data.dz;
[~, index_z_1] = find(PSF_data.Intensity_normalize==1);
[~, index_z_2] = min(abs(plot_z-focal_plane_position));
disp(['Best Focus Plane = ',num2str(plot_z(index_z_1)),' mm'])
figure('color','k')
p1 = pcolor(plot_z,PSF_data.Monitor1_y,PSF_data.Power_normalize);
p2 = line([plot_z(index_z_1) plot_z(index_z_1)],[PSF_data.Monitor1_y(1) PSF_data.Monitor1_y(end)], ...
'color','w','linewidth',0.5,'linestyle',':');
p3 = line([plot_z(index_z_2) plot_z(index_z_2)],[PSF_data.Monitor1_y(1) PSF_data.Monitor1_y(end)], ...
'color','y','linewidth',0.5,'linestyle','-');
title('Point Spread Function YZ',['Best Focus Plane = ',num2str(plot_z(index_z_1)),' mm'])
legend([p2, p3],'Best Focus Plane','Focus Plane','Location','northwest','NumColumns',1)
colormap('jet'); shading interp; xlabel('z (mm)'); ylabel('y (mm)'); colorbar
pause(0.01)
end
%%
if Switch(2)==1
figure('color','k')
surf(PSF_data.Monitor2_x,PSF_data.Monitor2_y,PSF_data.Power_normalize_xy)
title('Point Spread Function XY',['Strehl Ratio = ',num2str(PSF_data.Strehl_ratio_xy)])
colormap('jet'); shading interp; xlabel('x (mm)'); ylabel('y (mm)'); zlabel('Normalize Intensity'); colorbar
pause(0.01)
end
end
function MTF(Lens,LSF_data,diffra_limit,ang_y)
LSF = LSF_data.Power;
OTF = fftshift(fft(LSF));
MTF = abs(OTF);
MTF = MTF./max(MTF);
size = length(MTF);
D = Lens.aperture;
a = linspace(-size/2,size/2,size);
f = a*(1/D);
figure('color','k')
plot(diffra_limit.f,diffra_limit.MTF',':','linewidth',.5,'color','w')
hold on
plot(f,MTF,'linewidth',.5,'color',[0.93,0.69,0.13])
xlim([0,diffra_limit.cutoff_freq])
title('Diffraction MTF')
xlabel('cycles / mm')
ylabel('Modulation')
grid on
legend('Diffraction Limit',['Ang ',num2str(ang_y),' degree'])
ax = gca;
ax.GridColor = [0.32 0.32 0.32];
pause(0.01)
end
end
end