-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluator.py
executable file
·100 lines (77 loc) · 3.18 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
import os
import re
import sys
sys.path.append(os.getcwd())
import time
import random
import shutil
import numpy as np
import tensorflow as tf
from lsgn_data import LSGNData
from lsgn_evaluator import LSGNEvaluator
from srl_model import SRLModel
import util
def copy_checkpoint(source, target):
for ext in (".index", ".data-00000-of-00001"):
shutil.copyfile(source + ext, target + ext)
if __name__ == "__main__":
util.set_gpus()
if len(sys.argv) > 1:
name = sys.argv[1]
print("Running experiment: {} (from command-line argument).".format(name))
else:
name = os.environ["EXP"]
print("Running experiment: {} (from environment variable).".format(name))
config = util.get_config("experiments.conf")[name]
config["log_dir"] = util.mkdirs(os.path.join(config["log_root"], name))
# Dynamic batch size.
config["batch_size"] = -1
config["max_tokens_per_batch"] = -1
# Use dev lm, if provided.
if config["lm_path"] and "lm_path_dev" in config and config["lm_path_dev"]:
config["lm_path"] = config["lm_path_dev"]
util.print_config(config)
data = LSGNData(config)
model = SRLModel(data, config)
evaluator = LSGNEvaluator(config)
variables_to_restore = []
for var in tf.global_variables():
if "module/" not in var.name:
variables_to_restore.append(var)
else:
print("Not restoring from checkpoint:", var.name)
saver = tf.train.Saver(variables_to_restore)
log_dir = config["log_dir"]
assert not ("final" in name) # Make sure we don't override a finalized checkpoint.
writer = tf.summary.FileWriter(log_dir, flush_secs=20)
evaluated_checkpoints = set()
max_f1 = 0
best_task_f1 = {}
checkpoint_pattern = re.compile(".*model.ckpt-([0-9]*)\Z")
with tf.Session() as session:
while True:
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path and ckpt.model_checkpoint_path not in evaluated_checkpoints:
print("Evaluating {}".format(ckpt.model_checkpoint_path))
tf.global_variables_initializer().run()
# Move it to a temporary location to avoid being deleted by the training supervisor.
tmp_checkpoint_path = os.path.join(log_dir, "model.tmp.ckpt")
copy_checkpoint(ckpt.model_checkpoint_path, tmp_checkpoint_path)
global_step = int(checkpoint_pattern.match(ckpt.model_checkpoint_path).group(1))
saver.restore(session, ckpt.model_checkpoint_path)
print("Start evaluating ...")
eval_summary, f1, task_to_f1 = evaluator.evaluate(
session, data, model.predictions, model.loss)
if f1 > max_f1:
max_f1 = f1
for task, f1 in task_to_f1.items():
best_task_f1[task] = f1
copy_checkpoint(tmp_checkpoint_path, os.path.join(log_dir, "model.max.ckpt"))
print("Current max combined F1: {:.2f}".format(max_f1))
for task, f1 in best_task_f1.items():
print("Max {} F1: {:.2f}".format(task, f1))
writer.add_summary(eval_summary, global_step)
print("Evaluation written to {} at step {}".format(log_dir, global_step))
evaluated_checkpoints.add(ckpt.model_checkpoint_path)
time.sleep(config["eval_sleep_secs"])