-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenv_cfg.py
669 lines (619 loc) · 43.1 KB
/
env_cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import argparse
import os
from collections import deque
import numpy as np
def str2bool(v):
return v.lower() in ('true', '1')
class Config(object):
def __init__(self):
# crm
self.arg_lists = []
self.parser = argparse.ArgumentParser()
game_arg = self.add_argument_group('BeerGame')
game_arg.add_argument('--task', type=str, default='bg')
game_arg.add_argument('--fixedAction', type=str2bool, default='False',
help='if you want to have actions in [0,actionMax] set it to True. with False it will set it [actionLow, actionUp]')
game_arg.add_argument('--observation_data', type=str2bool, default=False,
help='if it is True, then it uses the data that is generated by based on few real world observation')
game_arg.add_argument('--data_id', type=int, default=22, help='the default item id for the basket dataset')
game_arg.add_argument('--TLow', type=int, default=100, help='duration of one GAME (lower bound)')
game_arg.add_argument('--TUp', type=int, default=100, help='duration of one GAME (upper bound)')
game_arg.add_argument('--demandDistribution', type=int, default=0,
help='0=uniform, 1=normal distribution, 2=the sequence of 4,4,4,4,8,..., 3= basket data, 4= forecast data')
game_arg.add_argument('--scaled', type=str2bool, default=False,
help='if true it uses the (if) existing scaled parameters')
game_arg.add_argument('--demandLow', type=int, default=0, help='the lower bound of random demand')
game_arg.add_argument('--demandUp', type=int, default=3, help='the upper bound of random demand')
game_arg.add_argument('--demandMu', type=float, default=10,
help='the mu of the normal distribution for demand ')
game_arg.add_argument('--demandSigma', type=float, default=2,
help='the sigma of the normal distribution for demand ')
game_arg.add_argument('--actionMax', type=int, default=2, help='it works when fixedAction is True')
game_arg.add_argument('--actionUp', type=int, default=2,
help='bounds on my decision (upper bound), it works when fixedAction is True')
game_arg.add_argument('--actionLow', type=int, default=-2,
help='bounds on my decision (lower bound), it works when fixedAction is True')
game_arg.add_argument('--action_step', type=int, default=1,
help='The obtained action value by dnn is multiplied by this value')
game_arg.add_argument('--actionList', type=list, default=[], help='The list of the available actions')
game_arg.add_argument('--actionListLen', type=int, default=0, help='the length of the action list')
game_arg.add_argument('--actionListOpt', type=int, default=0,
help='the action list which is used in optimal and sterman')
game_arg.add_argument('--actionListLenOpt', type=int, default=0, help='the length of the actionlistopt')
game_arg.add_argument('--agentTypes', type=list, default=['dnn', 'dnn', 'dnn', 'dnn'], help='the player types')
game_arg.add_argument('--agent_type1', type=str, default='dnn',
help='the player types for agent 1, it can be dnn, Strm, bs, rnd')
game_arg.add_argument('--agent_type2', type=str, default='dnn',
help='the player types for agent 2, it can be dnn, Strm, bs, rnd')
game_arg.add_argument('--agent_type3', type=str, default='dnn',
help='the player types for agent 3, it can be dnn, Strm, bs, rnd')
game_arg.add_argument('--agent_type4', type=str, default='dnn',
help='the player types for agent 4, it can be dnn, Strm, bs, rnd')
game_arg.add_argument('--NoAgent', type=int, default=1,
help='number of agents, currently it should be in {1,2,3,4}')
game_arg.add_argument('--cp1', type=float, default=2.0, help='shortage cost of player 1')
game_arg.add_argument('--cp2', type=float, default=0.0, help='shortage cost of player 2')
game_arg.add_argument('--cp3', type=float, default=0.0, help='shortage cost of player 3')
game_arg.add_argument('--cp4', type=float, default=0.0, help='shortage cost of player 4')
game_arg.add_argument('--ch1', type=float, default=2.0, help='holding cost of player 1')
game_arg.add_argument('--ch2', type=float, default=2.0, help='holding cost of player 2')
game_arg.add_argument('--ch3', type=float, default=2.0, help='holding cost of player 3')
game_arg.add_argument('--ch4', type=float, default=2.0, help='holding cost of player 4')
game_arg.add_argument('--alpha_b1', type=float, default=-0.5,
help='alpha of Sterman formula parameter for player 1')
game_arg.add_argument('--alpha_b2', type=float, default=-0.5,
help='alpha of Sterman formula parameter for player 2')
game_arg.add_argument('--alpha_b3', type=float, default=-0.5,
help='alpha of Sterman formula parameter for player 3')
game_arg.add_argument('--alpha_b4', type=float, default=-0.5,
help='alpha of Sterman formula parameter for player 4')
game_arg.add_argument('--betta_b1', type=float, default=-0.2,
help='beta of Sterman formula parameter for player 1')
game_arg.add_argument('--betta_b2', type=float, default=-0.2,
help='beta of Sterman formula parameter for player 2')
game_arg.add_argument('--betta_b3', type=float, default=-0.2,
help='beta of Sterman formula parameter for player 3')
game_arg.add_argument('--betta_b4', type=float, default=-0.2,
help='beta of Sterman formula parameter for player 4')
game_arg.add_argument('--eta', type=list, default=[0, 4, 4, 4], help='the total cost regulazer')
game_arg.add_argument('--distCoeff', type=int, default=20, help='the total cost regulazer')
game_arg.add_argument('--gameConfig', type=int, default=3,
help='if it is "0", it uses the current "agentType", otherwise sets agent types according to the function setAgentType() in this file.')
game_arg.add_argument('--ifUseTotalReward', type=str2bool, default='False',
help='if you want to have the total rewards in the experience replay, set it to true.')
game_arg.add_argument('--ifUsedistTotReward', type=str2bool, default='True',
help='If use correction to the rewards in the experience replay for all iterations of current game')
game_arg.add_argument('--ifUseASAO', type=str2bool, default='True',
help='if use AS and AO, i.e., received shipment and received orders in the input of DNN')
game_arg.add_argument('--ifUseActionInD', type=str2bool, default='False',
help='if use action in the input of DNN')
game_arg.add_argument('--stateDim', type=int, default=5,
help='Number of elements in the state desciptor - Depends on ifUseASAO')
game_arg.add_argument('--iftl', type=str2bool, default=False, help='if apply transfer learning')
game_arg.add_argument('--ifTransferFromSmallerActionSpace', type=str2bool, default=False,
help='if want to transfer knowledge from a network with different action space size.')
game_arg.add_argument('--baseActionSize', type=int, default=5,
help='if ifTransferFromSmallerActionSpace is true, this determines the size of action space of saved network')
game_arg.add_argument('--tlBaseBrain', type=int, default=3,
help='the gameConfig of the base network for re-training with transfer-learning')
game_arg.add_argument('--baseDemandDistribution', type=int, default=0, help='same as the demandDistribution')
game_arg.add_argument('--MultiAgent', type=str2bool, default=False,
help='if run multi-agent RL model, not fully operational')
game_arg.add_argument('--MultiAgentRun', type=list, default=[True, True, True, True],
help='In the multi-RL setting, it determines which agent should get training.')
game_arg.add_argument('--if_use_AS_t_plus_1', type=str2bool, default='False',
help='if use AS[t+1], not AS[t] in the input of DNN')
game_arg.add_argument('--ifSinglePathExist', type=str2bool, default=False,
help='If true it uses the predefined path in pre_model_dir and does not merge it with demandDistribution.')
game_arg.add_argument('--ifPlaySavedData', type=str2bool, default=False,
help='If true it uses the saved actions which are read from file.')
#################### parameters of the leadtimes ########################
leadtimes_arg = self.add_argument_group('leadtimes')
leadtimes_arg.add_argument('--leadRecItemLow', type=list, default=[2, 2, 2, 4],
help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItemUp', type=list, default=[2, 2, 2, 4],
help='the max lead time for receiving items')
leadtimes_arg.add_argument('--leadRecOrderLow', type=int, default=[2, 2, 2, 0],
help='the min lead time for receiving orders')
leadtimes_arg.add_argument('--leadRecOrderUp', type=int, default=[2, 2, 2, 0],
help='the max lead time for receiving orders')
leadtimes_arg.add_argument('--ILInit', type=list, default=[0, 0, 0, 0], help='')
leadtimes_arg.add_argument('--AOInit', type=list, default=[0, 0, 0, 0], help='')
leadtimes_arg.add_argument('--ASInit', type=list, default=[0, 0, 0, 0],
help='the initial shipment of each agent')
leadtimes_arg.add_argument('--leadRecItem1', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem2', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem3', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem4', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecOrder1', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder2', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder3', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder4', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--ILInit1', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit2', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit3', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit4', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--AOInit1', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit2', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit3', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit4', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--ASInit1', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit2', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit3', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit4', type=int, default=0, help='the initial arriving shipment of the agent')
#################### DQN setting ####################
DQN_arg = self.add_argument_group('DQN')
DQN_arg.add_argument('--maxEpisodesTrain', type=int, default=60100, help='number of GAMES to be trained')
DQN_arg.add_argument('--NoHiLayer', type=int, default=3, help='number of hidden layers')
DQN_arg.add_argument('--NoFixedLayer', type=int, default=1, help='number of hidden layers')
DQN_arg.add_argument('--node1', type=int, default=180, help='the number of nodes in the first hidden layer')
DQN_arg.add_argument('--node2', type=int, default=130, help='the number of nodes in the second hidden layer')
DQN_arg.add_argument('--node3', type=int, default=61, help='the number of nodes in the third hidden layer')
DQN_arg.add_argument('--nodes', type=list, default=[], help='')
DQN_arg.add_argument('--seed', type=int, default=40, help='the seed for DNN stuff')
DQN_arg.add_argument('--batchSize', type=int, default=64, help='the batch size which is used to obtain')
DQN_arg.add_argument('--minReplayMem', type=int, default=50000,
help='the minimum of experience reply size to start dnn')
DQN_arg.add_argument('--maxReplayMem', type=int, default=1000000, help='the maximum size of the replay memory')
DQN_arg.add_argument('--alpha', type=float, default=.97, help='learning rate for total reward distribution ')
DQN_arg.add_argument('--gamma', type=float, default=.99, help='discount factor for Q-learning')
DQN_arg.add_argument('--saveInterval', type=int, default=10000,
help='every xx training iteration, saves the games network')
DQN_arg.add_argument('--epsilonBeg', type=float, default=0.9, help='')
DQN_arg.add_argument('--epsilonEnd', type=float, default=0.1, help='')
DQN_arg.add_argument('--lr0', type=float, default=0.00025, help='the learning rate')
DQN_arg.add_argument('--Minlr', type=float, default=1e-8,
help='the minimum learning rate, if it drops below it, fix it there ')
DQN_arg.add_argument('--ifDecayAdam', type=str2bool, default=True,
help='decays the learning rate of the adam optimizer')
DQN_arg.add_argument('--decayStep', type=int, default=10000, help='the decay step of the learning rate')
DQN_arg.add_argument('--decayRate', type=float, default=0.98,
help='the rate to reduce the lr at every decayStep')
DQN_arg.add_argument('--display', type=int, default=1000,
help='the number of iterations between two display of results.')
DQN_arg.add_argument('--momentum', type=float, default=0.9, help='the momentum value')
DQN_arg.add_argument('--dnnUpCnt', type=int, default=10000,
help='the number of iterations that updates the dnn weights')
DQN_arg.add_argument('--multPerdInpt', type=int, default=10,
help='Number of history records which we feed into DNN')
#################### Utilities ####################
utility_arg = self.add_argument_group('Utilities')
utility_arg.add_argument('--address', type=str, default="",
help='the address which is used to save the model files')
utility_arg.add_argument('--ifUsePreviousModel', type=str2bool, default='False',
help='if there is a saved model, then False value of this parameter will overwrite.')
utility_arg.add_argument('--number_cpu_active', type=int, default=5, help='number of cpu cores')
utility_arg.add_argument('--gpu_memory_fraction', type=float, default=0.1,
help='the fraction of gpu memory which we are gonna use')
# Dirs
utility_arg.add_argument('--load_path', type=str, default='', help='The directory to load the models')
utility_arg.add_argument('--log_dir', type=str, default=os.path.expanduser('./logs/'), help='')
utility_arg.add_argument('--pre_model_dir', type=str, default=os.path.expanduser('./pre_model'), help='')
utility_arg.add_argument('--action_dir', type=str, default=os.path.expanduser('./'),
help='if ifPlaySavedData is true, it uses this path to load actions')
utility_arg.add_argument('--model_dir', type=str, default='./', help='')
utility_arg.add_argument('--TB', type=str2bool, default=False,
help='set to True if use tensor board and save the required data for TB.')
utility_arg.add_argument('--INFO_print', type=str2bool, default=True,
help='if true, it does not print anything all.')
utility_arg.add_argument('--tbLogInterval', type=int, default=80000, help='number of GAMES for testing')
#################### testing ####################
test_arg = self.add_argument_group('testing')
test_arg.add_argument('--testRepeatMid', type=int, default=1,
help='it is number of episodes which is going to be used for testing in the middle of training')
test_arg.add_argument('--testInterval', type=int, default=100, help='every xx games compute "test error"')
test_arg.add_argument('--ifSaveFigure', type=str2bool, default=True,
help='if is it True, save the figures in each testing.')
test_arg.add_argument('--if_titled_figure', type=str2bool, default='True',
help='if is it True, save the figures with details in the title.')
test_arg.add_argument('--saveFigInt', type=list, default=[10000, 60000], help='')
test_arg.add_argument('--saveFigIntLow', type=int, default=10000, help='')
test_arg.add_argument('--saveFigIntUp', type=int, default=60000, help='')
test_arg.add_argument('--ifsaveHistInterval', type=str2bool, default=False,
help='if every xx games save details of the episode')
test_arg.add_argument('--saveHistInterval', type=int, default=5000,
help='every xx games save details of the play')
test_arg.add_argument('--Ttest', type=int, default=100,
help='it defines the number of periods in the test cases')
test_arg.add_argument('--ifOptimalSolExist', type=str2bool, default=True,
help='if the instance has optimal base stock policy, set it to True, otherwise it should be False.')
test_arg.add_argument('--f1', type=float, default=8, help='base stock policy decision of player 1')
test_arg.add_argument('--f2', type=float, default=8, help='base stock policy decision of player 2')
test_arg.add_argument('--f3', type=float, default=0, help='base stock policy decision of player 3')
test_arg.add_argument('--f4', type=float, default=0, help='base stock policy decision of player 4')
test_arg.add_argument('--f_init', type=list, default=[32, 32, 32, 24],
help='base stock policy decision for 4 time-steps on the C(4,8) demand distribution')
test_arg.add_argument('--use_initial_BS', type=str2bool, default=False, help='If use f_init set it to True')
test_arg.add_argument('--ifSaveHist', type=str2bool, default='False',
help='if it is true, saves history, prediction, and the randBatch in each period, WARNING: just make it True in small runs, it saves huge amount of files.')
# DQN_arg = self.add_argument_group('DQN')
# DQN_arg.add_argument('--gamma', type=float, default=.99, help='discount factor for Q-learning')
def str2bool(self, v):
return v.lower() in ('true', '1')
def add_argument_group(self, name):
arg = self.parser.add_argument_group(name)
self.arg_lists.append(arg)
return arg
# buildActionList: actions for the beer game problem
def buildActionList(self, config):
aDiv = 1 # difference in the action list
if config.fixedAction:
actions = list(range(0, config.actionMax + 1,
aDiv)) # If you put the second argument =11, creates an actionlist from 0..xx
else:
actions = list(range(config.actionLow, config.actionUp + 1, aDiv))
return actions
# specify the dimension of the state of the game
def getStateDim(self, config):
if config.ifUseASAO:
stateDim = 5
else:
stateDim = 3
if config.ifUseActionInD:
stateDim += 1
return stateDim
# agents 1=[dnn,dnn,dnn,dnn]; 2=[dnn,Strm,Strm,Strm]; 3=[dnn,bs,bs,bs]
def setAgentType(self, config):
config.agentTypes = ["bs", "bs", "bs", "bs"]
def set_optimal(self, config):
if config.demandDistribution == 0:
if config.cp1 == 2 and config.ch1 == 2 and config.ch2 == 2 and config.ch3 == 2 and config.ch4 == 2:
config.f1 = 8.
config.f2 = 8.
config.f3 = 0.
config.f4 = 0.
def get_config(self):
config, unparsed = self.parser.parse_known_args()
config = self.update_config(config)
return config, unparsed
def fill_leadtime_initial_values(self, config):
config.leadRecItemLow = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]
config.leadRecItemUp = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]
config.leadRecOrderLow = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3,
config.leadRecOrder4]
config.leadRecOrderUp = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3, config.leadRecOrder4]
config.ILInit = [config.ILInit1, config.ILInit2, config.ILInit3, config.ILInit4]
config.AOInit = [config.AOInit1, config.AOInit2, config.AOInit3, config.AOInit4]
config.ASInit = [config.ASInit1, config.ASInit2, config.ASInit3, config.ASInit4]
def get_auxuliary_leadtime_initial_values(self, config):
config.leadRecOrderUp_aux = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3,
config.leadRecOrder4]
config.leadRecItemUp_aux = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]
def fix_lead_time_manufacturer(self, config):
if config.leadRecOrder4 > 0:
config.leadRecItem4 += config.leadRecOrder4
config.leadRecOrder4 = 0
def set_sterman_parameters(self, config):
config.alpha_b = [config.alpha_b1, config.alpha_b2, config.alpha_b3, config.alpha_b4]
config.betta_b = [config.betta_b1, config.betta_b2, config.betta_b3, config.betta_b4]
def update_config(self, config):
config.actionList = self.buildActionList(config) # The list of the available actions
config.actionListLen = len(config.actionList) # the length of the action list
# set_optimal(config)
config.f = [config.f1, config.f2, config.f3, config.f4] # [6.4, 2.88, 2.08, 0.8]
config.actionListLen = len(config.actionList)
if config.demandDistribution == 0:
config.actionListOpt = list(range(0, int(max(config.actionUp * 30 + 1, 3 * sum(config.f))), 1))
else:
config.actionListOpt = list(range(0, int(max(config.actionUp * 30 + 1, 7 * sum(config.f))), 1))
config.actionListLenOpt = len(config.actionListOpt)
config.agentTypes = ['dnn', 'dnn', 'dnn', 'dnn']
config.saveFigInt = [config.saveFigIntLow, config.saveFigIntUp]
if config.gameConfig == 0:
config.NoAgent = min(config.NoAgent, len(config.agentTypes))
config.agentTypes = [config.agent_type1, config.agent_type2, config.agent_type3, config.agent_type4]
else:
config.NoAgent = 4
self.setAgentType(config) # set the agent brain types according to ifFourDNNtrain, ...
config.c_h = [config.ch1, config.ch2, config.ch3, config.ch4]
config.c_p = [config.cp1, config.cp2, config.cp3, config.cp4]
config.stateDim = self.getStateDim(
config) # Number of elements in the state description - Depends on ifUseASAO
# np.random.seed(seed = config.seed)
# self.setSavedDimentionPerBrain(config) # set the parameters of pre_trained model.
# self.fillnodes(config) # create the structure of network nodes
self.get_auxuliary_leadtime_initial_values(config)
self.fix_lead_time_manufacturer(config)
self.fill_leadtime_initial_values(config)
self.set_sterman_parameters(config)
return config
class Agent(object):
# initializes the agents with initial values for IL, OO and saves self.agentNum for recognizing the agents.
def __init__(self, agentNum, IL, AO, AS, c_h, c_p, eta, compuType, config):
self.agentNum = agentNum
self.IL = IL # Inventory level of each agent - changes during the game
self.OO = 0 # Open order of each agent - changes during the game
self.ASInitial = AS # the initial arriving shipment.
self.ILInitial = IL # IL at which we start each game with this number
self.AOInitial = AO # OO at which we start each game with this number
self.config = config # an instance of config is stored inside the class
self.curState = [] # this function gets the current state of the game
self.nextState = []
self.curReward = 0 # the reward observed at the current step
self.cumReward = 0 # cumulative reward; reset at the begining of each episode
self.totRew = 0 # it is reward of all players obtained for the current player.
self.c_h = c_h # holding cost
self.c_p = c_p # backorder cost
self.eta = eta # the total cost regulazer
self.AS = np.zeros((1, 1)) # arriced shipment
self.AO = np.zeros((1, 1)) # arrived order
self.action = 0 # the action at time t
self.totalR = 0
self.TTT = 0
self.srdqnBaseStock = [] # this holds the base stock levels that srdqn has came up with. added on Nov 8, 2017
self.T = 0
self.bsBaseStock = 0
self.init_bsBaseStock = 0
self.nextObservation = []
# reset player information
def resetPlayer(self, T):
self.IL = self.ILInitial
self.OO = 0
self.AS = np.squeeze(np.zeros(
(1, T + max(self.config.leadRecItemUp) + max(self.config.leadRecOrderUp) + 10))) # arriced shipment
self.AO = np.squeeze(
np.zeros((1, T + max(self.config.leadRecItemUp) + max(self.config.leadRecOrderUp) + 10))) # arrived order
if self.agentNum != 0:
for i in range(self.config.leadRecOrderUp_aux[self.agentNum - 1]):
self.AO[i] = self.AOInitial[self.agentNum - 1]
for i in range(self.config.leadRecItemUp[self.agentNum]):
self.AS[i] = self.ASInitial
self.curReward = 0 # the reward observed at the current step
self.cumReward = 0 # cumulative reward; reset at the begining of each episode
self.action = []
self.srdqnBaseStock = [] # this holds the base stock levels that srdqn has came up with. added on Nov 8, 2017
self.T = T
self.curObservation = self.getCurState(1) # this function gets the current state of the game
self.nextObservation = []
self.totalR = 0
# updates the IL and OO at time t, after recieving "rec" number of items
def recieveItems(self, time):
self.IL = self.IL + self.AS[time] # inverntory level update
self.OO = self.OO - self.AS[time] # invertory in transient update
# find action Value associated with the action list
def actionValue(self, curTime, playType, BS):
"""
return the action value (the order)
:param curTime:
:param playType:
:param BS: whether to consider arrived orders
:return:
"""
# if not BS:
# actionList = [-2, -1, 0, 1, 2]
# else:
actionList = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] #the action value is fixed to be positive
if not BS: # SRDQN
a = max(0, actionList[np.argmax(self.action)] + self.AO[curTime])
else:
a = max(0, actionList[np.argmax(self.action)])
return a
# getReward returns the reward at the current state
def getReward(self):
# cost (holding + backorder) for one time unit
self.curReward = (self.c_p * max(0, -self.IL) + self.c_h * max(0, self.IL)) / 200.0 # self.config.Ttest #
self.curReward = -self.curReward; # make reward negative, because it is the cost
# sum total reward of each agent
self.cumReward = self.config.gamma * self.cumReward + self.curReward
# This function returns a np.array of the current state of the agent
def getCurState(self, t):
if self.config.ifUseASAO:
if self.config.if_use_AS_t_plus_1:
curState = np.array(
[1 * (self.IL < 0) * self.IL, 1 * (self.IL > 0) * self.IL, self.OO, self.AS[t], self.AO[t]])
else:
curState = np.array(
[1 * (self.IL < 0) * self.IL, 1 * (self.IL > 0) * self.IL, self.OO, self.AS[t - 1], self.AO[t]])
else:
curState = np.array([1 * (self.IL < 0) * self.IL, 1 * (self.IL > 0) * self.IL, self.OO])
if self.config.ifUseActionInD:
a = self.config.actionList[np.argmax(self.action)]
curState = np.concatenate((curState, np.array([a])))
return curState
class TestDemand:
def __init__(self):
self.test_deq = deque()
demand = [0,0,1,1,1,0,2,1,1,1,1,0,2,2,1,1,0,0,1,2,2,1,0,0,2,0,2,1,2,1,1,1,2,1,1,0,1
,0,0,2,1,2,0,2,2,2,1,1,1,1,0,2,0,1,2,0,2,2,0,1,2,2,0,0,0,0,2,0,2,2,1,2,1,1
,0,1,2,1,2,1,0,2,2,1,2,0,0,0,2,2,0,1,1,1,0,1,0,0,1,1,0,0]
self.test_deq.append(demand)
demand = [1,0,0,0,0,1,2,0,2,1,0,1,1,2,1,1,0,2,1,1,0,0,0,1,2,0,2,2,2,0,0,2,0,0,1,1,0
,2,1,0,0,1,0,0,0,2,1,0,2,0,1,0,0,1,0,0,0,0,1,2,1,1,0,2,1,0,2,2,0,2,1,0,1,2
,0,2,2,0,0,1,2,1,0,0,0,0,2,1,0,2,2,1,2,1,1,0,1,0,2,1,0,1]
self.test_deq.append(demand)
demand = [1,2,0,2,1,2,1,2,1,1,0,2,1,2,1,2,0,2,0,1,1,2,0,1,1,0,1,1,1,2,1,2,1,2,2,0,1
,1,1,0,0,2,2,1,2,2,1,2,1,1,0,2,0,2,2,1,0,0,1,0,2,1,1,0,1,2,0,1,2,0,0,2,1,0
,0,0,2,0,2,1,1,0,2,2,1,2,1,1,2,0,2,0,1,1,1,1,1,2,0,2,0,0]
self.test_deq.append(demand)
demand = [1,0,1,2,0,2,2,1,2,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,2,0,1,0,0,0,2,0,1,2,0,1
,2,0,1,2,2,2,2,0,0,0,2,0,0,0,2,1,1,0,1,1,0,1,1,2,1,1,2,2,2,1,1,0,2,0,2,2,1
,2,1,2,2,0,2,0,2,1,2,2,1,1,1,1,2,0,2,1,1,2,0,2,2,2,2,0,2]
self.test_deq.append(demand)
demand = [0,2,2,1,0,2,1,2,2,1,0,0,1,1,1,2,0,1,0,2,0,2,0,1,1,2,1,2,0,2,1,1,2,2,0,0,1
,0,0,2,2,1,1,1,0,0,2,1,0,2,1,0,2,1,0,1,0,2,2,2,2,0,1,0,1,0,1,1,2,2,0,0,0,2
,0,0,0,1,0,2,0,0,2,2,1,1,0,1,0,1,0,0,2,1,0,0,0,0,1,1,1,0]
self.test_deq.append(demand)
demand = [0,2,1,2,2,0,0,0,2,0,1,2,0,2,2,0,0,1,0,0,2,2,2,0,2,2,0,1,0,2,0,2,2,1,0,0,2
,1,1,0,0,1,1,2,1,0,2,2,0,2,2,2,2,2,1,1,1,2,2,0,2,1,1,1,0,2,0,2,1,2,1,0,2,0
,1,1,2,2,0,0,1,0,0,1,2,1,0,1,1,1,1,2,2,2,0,0,2,2,2,0,2,0]
self.test_deq.append(demand)
demand = [0,1,1,0,2,2,0,1,0,0,0,2,1,1,0,2,1,0,1,2,1,0,2,2,0,0,0,2,0,0,1,0,1,1,2,0,2
,0,2,1,0,2,2,2,0,2,1,2,0,2,2,1,0,2,0,2,1,2,2,2,2,2,0,1,0,2,1,0,1,2,0,2,2,2
,1,0,2,2,2,1,0,2,1,2,1,2,1,0,2,2,2,2,0,1,1,1,2,2,0,2,1,0]
self.test_deq.append(demand)
demand = [1,2,1,1,0,2,1,1,0,2,1,2,2,2,1,1,2,2,2,2,1,2,1,1,0,1,0,2,0,0,2,0,1,2,0,0,0
,1,0,1,0,2,2,1,2,0,2,2,1,1,0,1,0,0,1,1,0,1,1,0,1,2,2,2,0,1,0,2,0,1,1,1,0,0
,2,1,1,0,2,0,0,1,0,0,0,2,0,0,2,0,1,0,2,1,1,0,0,1,1,2,1,1]
self.test_deq.append(demand)
demand = [1,1,0,1,1,0,1,0,0,1,1,2,1,0,1,2,1,2,0,2,2,0,1,1,0,1,0,0,2,2,0,1,0,2,2,2,0
,2,1,2,0,2,2,0,2,1,1,1,1,0,2,2,2,0,0,2,2,0,1,2,2,0,2,1,1,2,2,0,0,0,2,1,2,2
,1,2,0,0,0,2,1,1,2,0,2,2,0,2,1,0,0,1,1,0,0,1,1,1,2,0,0,1]
self.test_deq.append(demand)
demand = [0,1,2,1,1,1,1,1,0,2,1,0,2,0,0,1,0,1,1,2,2,2,2,0,1,1,2,0,0,1,2,1,1,2,1,1,0
,1,2,1,2,1,0,1,0,1,0,2,1,0,1,1,1,1,1,1,1,2,2,0,2,1,2,1,0,0,1,2,0,1,2,1,0,0
,1,2,1,2,2,0,0,0,2,1,1,1,1,1,1,2,1,0,0,2,0,2,0,2,2,1,1,1]
self.test_deq.append(demand)
demand = [1,2,2,0,0,1,0,0,1,2,2,1,1,0,1,1,1,1,1,2,1,1,2,1,0,2,1,0,2,2,1,0,0,0,0,1,2
,2,1,2,1,1,2,2,2,0,0,1,2,2,0,1,2,1,1,2,1,0,1,1,0,2,1,2,1,2,2,0,1,1,1,2,2,0
,2,0,1,1,1,0,1,2,1,2,2,0,2,2,1,1,0,1,1,1,0,0,2,2,1,0,2,0]
self.test_deq.append(demand)
demand = [2,1,1,2,0,0,0,0,2,1,0,0,2,0,0,0,1,1,0,1,0,1,2,0,0,1,0,1,2,2,2,1,0,1,0,2,0
,2,0,1,0,1,1,1,0,2,2,0,0,0,1,1,0,2,1,2,2,1,1,2,2,1,0,2,1,0,2,1,0,2,1,1,2,0
,1,0,0,0,2,2,0,1,2,2,0,1,2,0,2,1,1,2,1,2,1,1,2,2,2,1,2,2]
self.test_deq.append(demand)
demand = [0,0,1,1,1,2,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,2,0,1,1,1,0,0,1,2,0,1,1,0,0,2
,1,1,0,2,2,2,2,2,1,2,2,1,1,0,2,1,1,0,1,1,1,1,1,1,0,0,2,2,2,2,1,1,0,0,1,2,0
,2,0,0,1,2,0,0,1,2,2,2,0,2,2,1,1,0,1,0,1,2,1,1,1,1,2,0,1]
self.test_deq.append(demand)
demand = [2,1,0,1,0,0,0,2,0,1,1,0,0,0,1,1,0,1,0,2,1,1,2,1,0,2,0,0,1,0,0,1,0,0,1,1,2
,2,1,0,2,2,1,2,1,1,2,2,2,1,2,0,2,0,2,0,1,1,2,2,0,0,0,0,1,1,1,2,0,0,0,2,1,0
,1,2,2,1,2,0,0,2,1,1,2,0,0,2,1,2,0,2,2,1,2,2,2,0,0,1,0,0]
self.test_deq.append(demand)
demand = [0,0,0,2,1,2,2,0,1,2,0,2,0,1,1,2,0,1,2,1,1,2,2,1,1,1,2,0,2,2,2,1,2,2,1,2,2
,2,1,1,1,0,1,2,2,2,2,2,0,1,1,0,2,0,1,2,1,2,0,2,0,0,0,0,1,0,2,2,2,1,1,0,1,1
,1,2,0,0,2,0,0,1,2,2,1,2,1,2,2,0,0,1,0,0,2,0,1,0,0,2,1,0]
self.test_deq.append(demand)
demand = [2,0,1,0,0,2,2,1,1,1,0,1,0,2,1,0,0,2,0,2,0,1,2,0,1,0,1,2,1,2,2,0,2,1,0,1,2
,1,1,0,0,2,2,1,0,2,1,2,0,2,2,2,0,2,2,0,0,0,0,0,2,1,1,1,2,2,0,0,0,1,1,2,2,2
,2,1,2,2,0,2,0,1,2,0,2,1,1,1,2,2,2,0,2,2,1,1,2,0,0,0,1,1]
self.test_deq.append(demand)
demand = [1,0,0,0,1,0,0,1,1,2,0,2,0,2,1,0,0,2,1,0,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,0,2
,2,0,2,2,1,0,0,0,0,1,2,1,0,0,2,1,2,1,0,1,1,1,0,0,0,2,0,2,0,2,0,0,2,0,2,1,1
,0,0,2,2,1,2,2,2,2,1,0,2,2,1,2,0,0,0,0,1,0,1,1,2,1,1,1,0]
self.test_deq.append(demand)
demand = [2,0,1,1,0,0,1,0,1,1,1,2,1,1,2,1,0,2,0,2,0,0,2,1,0,2,2,0,2,0,1,1,2,2,0,1,0
,1,0,1,0,0,0,2,1,1,1,1,1,0,2,2,0,0,1,2,0,1,2,2,0,0,1,0,2,2,2,1,1,1,2,1,2,0
,2,2,2,1,1,1,0,2,2,0,0,1,1,1,1,0,0,2,1,0,0,2,0,1,0,2,0,1]
self.test_deq.append(demand)
demand = [0,0,0,2,1,0,0,2,1,0,1,2,1,1,0,2,2,1,0,2,0,2,0,1,0,0,2,0,2,0,0,0,2,0,2,1,0
,2,2,2,1,0,1,0,2,2,0,1,1,1,0,2,1,1,2,1,2,2,0,0,0,1,2,2,0,1,2,1,0,1,2,2,2,0
,2,2,1,2,1,0,1,2,2,0,2,2,0,1,1,2,2,2,2,0,1,0,0,0,1,2,1,1]
self.test_deq.append(demand)
demand = [2,2,2,1,2,2,0,1,0,0,2,2,1,0,2,0,1,0,1,1,1,1,0,2,1,2,2,1,1,1,2,2,2,2,0,0,2
,0,1,1,2,1,2,0,0,1,2,1,0,0,1,2,0,1,0,1,2,1,1,1,2,1,2,2,2,2,0,2,2,1,1,2,0,1
,0,0,0,2,1,2,0,1,2,1,0,2,2,2,2,0,0,0,0,1,1,2,0,2,1,1,1,2]
self.test_deq.append(demand)
demand = [2,2,0,1,2,1,0,2,1,2,1,1,2,1,0,1,2,0,1,2,1,2,0,2,0,2,1,1,2,0,0,0,0,0,1,2,1
,1,0,2,1,2,2,1,2,2,0,1,2,0,2,1,2,0,2,0,2,2,1,1,0,0,1,0,1,0,2,2,2,1,0,1,0,1
,1,1,0,1,2,0,0,1,1,2,0,2,0,0,2,1,1,0,0,2,0,0,1,0,0,1,0,1]
self.test_deq.append(demand)
demand = [1,2,0,2,1,1,2,1,0,0,2,2,2,0,0,0,1,0,2,2,2,0,2,2,0,1,1,2,0,0,2,1,0,2,2,1,2
,2,2,0,2,0,1,2,1,2,1,0,1,1,1,0,2,2,0,2,1,0,2,1,1,1,0,2,1,1,0,0,1,0,0,0,0,0
,2,1,0,1,2,1,2,0,0,0,0,2,2,0,1,1,2,1,0,1,2,0,2,2,1,1,0,1]
self.test_deq.append(demand)
demand = [1,1,1,0,1,2,0,0,0,2,2,0,2,0,0,2,0,2,1,0,2,1,0,0,1,1,1,0,1,2,1,2,1,2,1,2,1
,0,1,0,0,2,2,2,1,0,1,1,1,1,1,2,2,2,0,1,0,0,0,2,2,0,1,2,0,2,2,1,0,2,0,0,1,0
,1,0,1,1,0,1,1,0,2,1,0,2,0,0,1,0,1,1,1,2,1,2,1,0,2,2,0,2]
self.test_deq.append(demand)
demand = [1,0,0,1,1,0,0,0,2,0,2,1,2,1,2,2,2,1,2,1,1,2,1,0,2,1,0,0,2,2,2,0,2,1,1,1,2
,2,0,0,0,0,2,1,0,0,2,2,1,1,2,0,2,0,0,0,1,0,0,2,1,1,2,2,2,0,1,0,2,2,2,1,0,1
,1,1,2,0,0,1,1,2,2,2,0,2,0,0,2,0,1,1,0,1,2,2,1,2,1,0,0,1]
self.test_deq.append(demand)
demand = [2,0,1,1,1,1,2,1,2,2,1,1,1,2,1,1,1,2,1,2,0,2,2,0,2,2,0,1,1,0,1,2,2,1,1,0,1
,2,0,0,0,1,2,0,2,0,2,2,2,2,2,2,2,1,2,1,0,0,1,0,1,0,1,0,2,2,1,1,1,2,2,2,2,2
,1,2,0,1,2,2,1,2,1,1,1,0,1,1,2,0,1,1,0,1,0,0,2,0,1,2,0,2]
self.test_deq.append(demand)
demand = [2,1,0,2,0,0,0,0,1,2,0,2,0,1,0,0,0,0,2,1,1,1,0,0,0,2,2,0,1,0,0,1,0,2,2,1,2
,1,2,0,1,2,1,0,1,1,1,2,2,0,2,1,0,1,1,2,2,0,1,1,2,0,2,1,2,0,0,0,2,0,0,2,0,1
,1,1,2,0,1,0,0,2,1,2,0,0,0,2,2,2,2,1,2,1,2,1,0,2,0,0,2,0]
self.test_deq.append(demand)
demand = [1,1,2,0,1,2,1,0,0,0,0,1,2,2,2,0,0,1,2,2,2,1,0,0,1,2,0,2,1,1,1,2,2,1,0,0,1
,1,0,2,2,2,2,1,1,2,1,0,1,2,2,2,1,2,1,2,1,2,1,0,1,2,1,1,1,2,2,2,2,0,0,0,1,2
,1,1,1,0,1,0,0,0,1,0,1,0,1,1,2,1,0,0,2,0,0,2,1,0,0,1,0,0]
self.test_deq.append(demand)
demand = [2,2,2,0,2,1,2,1,2,1,2,0,0,0,1,1,1,0,1,1,0,1,0,0,2,2,2,2,1,1,2,2,0,1,1,0,0
,2,0,1,2,2,2,2,2,2,2,0,2,0,1,1,1,2,0,0,0,0,2,2,0,1,0,0,2,0,2,0,2,0,2,1,0,2
,1,0,0,1,2,1,0,2,2,0,1,1,0,0,1,1,1,0,1,1,1,1,2,2,1,2,0,2]
self.test_deq.append(demand)
demand = [0,2,1,0,2,0,2,1,1,2,2,0,2,0,2,2,2,1,2,2,0,1,2,1,1,1,2,0,2,0,2,0,2,1,2,2,2
,2,0,2,2,1,0,1,2,0,0,1,2,2,2,2,1,2,2,0,1,1,0,0,0,1,2,1,0,0,2,0,2,2,2,1,2,2
,2,1,2,1,2,0,2,2,2,1,1,1,0,0,2,0,1,2,1,2,0,2,0,2,2,1,0,2]
self.test_deq.append(demand)
demand = [2,1,0,2,0,1,2,0,2,0,1,2,1,1,2,0,1,1,1,0,0,0,2,0,2,0,0,2,2,1,2,1,2,0,2,2,1
,0,1,0,0,1,2,2,2,2,2,1,1,0,2,1,2,1,0,0,0,0,0,1,0,2,1,2,2,2,2,2,1,1,0,0,1,2
,1,1,0,2,2,1,0,0,0,1,2,0,1,1,0,1,1,1,2,1,2,2,0,1,2,0,1,1]
self.test_deq.append(demand)
demand = [2,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,2,0,1,2,0,1,1,0,0,0,2,0,1,2,0,1,0,0,2,2
,2,2,2,1,0,1,0,0,0,0,0,0,0,1,2,2,1,2,1,2,0,1,2,0,1,1,1,2,2,1,1,2,0,2,2,2,1
,0,1,0,2,2,1,2,1,1,2,0,0,2,2,0,2,1,1,0,1,1,0,0,2,1,2,2,0]
self.test_deq.append(demand)
demand = [1,2,2,1,1,1,2,1,2,2,1,1,2,0,0,2,0,0,0,1,2,2,0,2,1,2,1,0,2,0,0,1,2,1,2,1,2
,0,0,0,2,1,1,0,1,1,0,2,0,2,1,1,0,2,0,0,1,2,2,0,1,1,2,0,0,2,2,1,1,0,1,2,0,0
,1,2,0,2,2,0,0,1,2,1,0,2,0,0,2,2,0,0,2,0,1,1,2,2,1,0,0,2]
self.test_deq.append(demand)
demand = [0,1,0,0,2,0,1,1,1,2,0,1,0,0,2,0,1,0,1,1,2,0,2,1,1,2,1,2,0,1,0,0,1,0,2,2,0
,2,0,1,2,0,1,1,2,0,0,1,1,0,1,2,1,0,1,1,1,0,0,1,2,0,1,1,1,2,2,2,1,0,0,1,2,1
,2,0,1,0,0,2,2,0,0,2,2,2,1,0,2,2,2,1,2,0,2,2,1,2,2,2,0,0]
self.test_deq.append(demand)
demand = [1,0,0,1,2,2,1,2,1,2,2,2,1,0,2,2,1,1,1,2,1,2,2,0,1,0,0,0,2,1,2,0,2,0,0,1,0
,2,1,0,0,0,2,1,0,0,2,2,2,1,0,2,1,0,2,1,2,1,1,2,0,1,0,1,1,2,0,2,0,1,1,2,0,1
,1,2,1,2,2,2,2,2,1,1,1,2,0,0,2,1,0,1,1,2,2,2,2,0,0,1,2,1]
self.test_deq.append(demand)
demand = [1,0,0,0,1,1,0,1,1,0,2,2,0,0,2,0,1,1,1,0,0,2,0,1,0,0,0,2,1,1,0,2,0,0,1,2,1
,0,2,0,1,2,2,1,0,1,2,2,2,0,0,1,1,0,0,1,2,1,2,0,0,1,2,2,0,2,0,0,1,0,0,1,1,2
,2,0,0,0,2,2,1,0,0,1,0,2,2,1,0,0,2,2,0,1,1,0,0,1,1,1,0,0]
self.test_deq.append(demand)
demand = [2,0,2,1,0,0,1,0,0,1,0,2,0,1,2,2,2,0,2,2,2,2,1,2,0,0,0,0,0,0,2,2,2,2,2,2,2
,1,1,2,0,0,1,1,2,2,2,2,1,2,2,1,2,0,2,1,2,0,2,0,1,0,1,2,2,1,1,2,2,0,2,1,1,2
,2,1,2,1,2,1,1,1,1,2,2,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,2,2]
self.test_deq.append(demand)
demand = [0,2,0,2,0,1,1,2,0,2,1,1,2,2,0,0,1,2,0,2,2,2,0,0,2,2,2,1,1,1,1,2,2,2,1,0,2
,2,0,0,2,2,2,1,2,1,0,2,0,2,0,0,2,0,0,0,2,2,1,1,2,2,1,0,1,1,0,2,1,0,2,2,2,1
,2,1,1,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,2,1,1,1,1,0,1,1,2,2]
self.test_deq.append(demand)
demand = [1,0,2,0,2,1,0,2,0,2,1,0,1,1,0,1,0,0,0,0,2,2,0,0,1,0,0,2,1,2,0,2,2,1,1,1,2
,0,1,2,2,1,1,1,1,2,0,1,0,0,2,1,0,1,1,0,0,2,1,1,0,0,1,0,1,0,0,0,0,0,2,2,1,0
,2,0,2,0,0,0,0,0,1,0,0,2,2,2,2,1,1,0,0,0,1,1,2,0,0,0,2,0]
self.test_deq.append(demand)
demand = [1,1,1,0,1,2,1,2,0,1,0,1,0,0,2,2,1,1,1,2,2,0,0,1,1,2,0,2,0,1,0,1,2,2,2,1,1
,0,1,0,2,1,0,0,0,2,2,0,0,1,1,1,0,0,0,1,2,1,0,1,0,0,0,1,1,1,1,1,0,0,2,0,0,0
,2,0,2,1,0,1,2,1,0,2,2,0,2,1,0,0,1,2,2,2,0,2,2,0,1,0,1,2]
self.test_deq.append(demand)
demand = [0,2,1,1,2,0,1,2,0,2,0,1,2,1,1,2,0,1,2,0,2,0,0,0,0,0,1,1,2,2,1,1,0,2,0,0,0
,0,1,1,1,2,1,0,2,1,2,1,1,1,1,2,2,1,0,0,0,1,0,2,0,0,1,2,2,2,1,1,1,0,2,2,1,2
,2,2,2,2,1,0,2,0,2,1,0,0,0,1,0,1,1,1,2,2,1,1,0,0,2,0,2,1]
self.test_deq.append(demand)
demand = [2,0,2,1,0,0,1,1,2,1,0,0,2,1,0,1,0,1,2,1,2,2,0,0,1,0,1,2,1,0,0,0,0,1,0,2,0
,1,0,1,1,1,0,0,0,0,2,0,0,2,0,2,0,1,0,0,1,2,0,2,0,2,1,0,1,2,2,0,2,1,0,1,0,0
,1,2,0,0,1,1,1,0,1,0,1,1,0,0,1,1,0,2,0,0,2,2,0,2,1,0,2,0]
self.test_deq.append(demand)
demand = [0,2,1,0,0,0,2,0,2,0,2,2,0,0,2,1,0,1,0,1,1,1,2,1,0,1,2,0,1,2,1,0,1,2,0,0,1
,0,0,1,1,1,0,1,0,2,1,2,1,0,2,2,0,2,2,2,2,1,2,1,0,2,0,0,1,2,0,2,0,2,1,1,2,2
,0,2,2,2,1,1,1,2,2,1,2,1,1,0,2,2,1,2,0,0,2,2,2,2,2,0,0,0]
self.test_deq.append(demand)
demand = [2,2,1,0,1,2,2,2,1,1,1,0,2,2,1,1,1,0,1,2,0,2,2,2,1,0,0,1,2,0,2,0,0,0,0,0,0
,1,0,0,2,2,1,1,0,2,0,1,2,1,2,2,1,0,0,1,1,0,2,0,2,0,1,0,0,0,0,0,1,1,1,2,1,1
,0,2,0,1,2,0,2,2,1,1,1,2,1,1,2,2,0,0,2,2,0,2,0,2,2,0,0,0]
self.test_deq.append(demand)
demand = [2,0,1,1,1,1,2,1,0,2,1,1,0,0,1,2,1,0,1,2,2,0,0,2,1,1,2,1,2,0,1,2,1,1,2,1,0
,0,1,2,2,1,2,2,2,2,1,0,1,0,1,1,2,1,1,0,0,0,0,0,2,1,0,2,1,1,0,2,1,1,0,1,2,0
,1,1,1,2,0,2,2,0,2,0,0,0,2,2,1,2,0,2,0,2,2,1,2,2,2,0,0,1]
self.test_deq.append(demand)
demand = [2,1,1,0,0,1,2,0,1,2,2,2,0,0,1,2,1,0,0,2,0,1,1,1,1,1,2,2,1,1,0,0,0,1,1,1,0
,0,0,0,2,1,2,1,0,0,1,2,0,2,0,2,0,1,0,1,2,0,1,1,2,0,1,1,0,0,2,2,1,0,0,1,2,1
,2,2,1,2,1,2,1,0,2,1,0,2,1,2,2,2,1,1,0,2,0,2,1,1,2,1,1,0]
self.test_deq.append(demand)
demand = [2,1,2,1,0,2,2,1,0,0,2,2,1,1,0,0,0,0,2,2,0,2,2,1,1,1,2,2,0,2,1,1,1,1,1,1,0
,0,0,1,1,2,1,2,1,0,0,1,1,1,0,0,2,1,1,0,1,0,2,0,1,2,0,1,0,1,0,2,2,2,2,0,1,0
,0,0,1,2,0,1,0,2,2,2,1,2,0,2,1,0,1,0,0,0,0,2,0,0,1,1,2,0]
self.test_deq.append(demand)
demand = [0,1,1,2,1,1,0,1,2,2,2,0,0,2,0,0,0,1,2,2,1,0,0,0,0,2,0,2,1,1,1,1,2,0,1,1,0
,0,0,1,2,2,1,2,1,2,2,1,0,2,2,0,2,0,0,2,0,0,1,0,0,0,0,0,1,2,2,2,1,2,0,1,0,0
,0,1,0,0,2,0,2,1,1,2,2,0,1,0,0,1,2,2,0,1,2,0,2,1,2,1,1,2]
self.test_deq.append(demand)
demand = [1,0,0,0,2,2,2,0,2,0,2,1,1,0,0,0,1,0,1,1,2,1,2,1,1,0,1,1,0,1,0,0,2,0,2,2,1
,1,1,2,1,1,0,0,0,0,0,0,0,0,2,2,2,1,1,0,2,1,2,1,2,0,2,1,1,0,2,2,2,1,1,0,0,2
,2,2,1,0,2,2,1,0,0,1,0,0,1,0,1,0,2,1,0,0,1,1,2,2,0,2,2,1]
self.test_deq.append(demand)
demand = [2,1,0,0,2,2,2,2,1,1,1,2,1,2,0,2,2,2,2,1,2,0,1,1,1,2,0,1,0,2,2,0,0,1,1,1,1
,2,1,1,0,1,2,1,0,2,2,0,1,0,2,2,2,1,1,2,2,1,2,1,2,0,1,0,0,1,0,1,1,0,0,0,2,0
,2,2,2,1,0,1,1,0,2,0,0,0,1,0,0,1,0,0,1,2,1,1,1,0,2,1,2,1]
self.test_deq.append(demand)
demand = [0,2,1,2,0,2,0,2,0,2,0,2,1,0,0,1,0,2,1,2,2,1,1,0,2,2,1,0,1,0,2,2,2,1,1,1,1
,2,1,1,2,0,0,2,2,1,2,1,0,0,1,1,2,1,1,2,2,2,1,1,2,1,1,2,1,1,1,1,2,0,2,1,1,0
,1,0,0,2,1,2,1,0,1,2,0,1,1,0,0,0,1,0,2,0,2,1,1,1,0,0,0,0]
self.test_deq.append(demand)
def next(self):
return self.test_deq.popleft()