-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
762 lines (626 loc) · 27.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchvision.utils import save_image
import torch.nn.functional as F
import os
import numpy as np
import warnings
from misc import utils
import random
warnings.filterwarnings("ignore")
# Values borrowed from /~https://github.com/VICO-UoE/DatasetCondensation/blob/master/utils.py
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
MEANS = {'cifar': [0.4914, 0.4822, 0.4465], 'imagenet': [0.485, 0.456, 0.406]}
STDS = {'cifar': [0.2023, 0.1994, 0.2010], 'imagenet': [0.229, 0.224, 0.225]}
MEANS['cifar10'] = MEANS['cifar']
STDS['cifar10'] = STDS['cifar']
MEANS['cifar100'] = MEANS['cifar']
STDS['cifar100'] = STDS['cifar']
MEANS['svhn'] = [0.4377, 0.4438, 0.4728]
STDS['svhn'] = [0.1980, 0.2010, 0.1970]
MEANS['mnist'] = [0.1307]
STDS['mnist'] = [0.3081]
MEANS['fashion'] = [0.2861]
STDS['fashion'] = [0.3530]
MEANS['tiny-imagenet'] = [0.4802, 0.4481, 0.3975]
STDS['tiny-imagenet']= [0.2302, 0.2265, 0.2262]
class TensorDataset(torch.utils.data.Dataset):
def __init__(self, images, labels, transform=None):
# images: NxCxHxW tensor
self.images = images.detach().cpu().float()
self.targets = labels.detach().cpu()
self.transform = transform
def __getitem__(self, index):
sample = self.images[index]
if self.transform != None:
sample = self.transform(sample)
target = self.targets[index]
return sample, target
def __len__(self):
return self.images.shape[0]
class ImageFolder(datasets.DatasetFolder):
def __init__(self,
root,
transform=None,
target_transform=None,
loader=datasets.folder.default_loader,
is_valid_file=None,
load_memory=False,
load_transform=None,
nclass=100,
phase=0,
slct_type='random',
ipc=-1,
seed=-1):
self.extensions = IMG_EXTENSIONS if is_valid_file is None else None
super(ImageFolder, self).__init__(root,
loader,
self.extensions,
transform=transform,
target_transform=target_transform,
is_valid_file=is_valid_file)
# Override
if nclass < 1000:
self.classes, self.class_to_idx = self.find_subclasses(nclass=nclass,
phase=phase,
seed=seed)
else:
self.classes, self.class_to_idx = self.find_classes(self.root)
self.nclass = nclass
self.samples = datasets.folder.make_dataset(self.root, self.class_to_idx, self.extensions,
is_valid_file)
if ipc > 0:
self.samples = self._subset(slct_type=slct_type, ipc=ipc)
self.targets = [s[1] for s in self.samples]
self.load_memory = load_memory
self.load_transform = load_transform
if self.load_memory:
self.imgs = self._load_images(load_transform)
else:
self.imgs = self.samples
def find_subclasses(self, nclass=100, phase=0, seed=0):
"""Finds the class folders in a dataset.
"""
classes = []
phase = max(0, phase)
cls_from = nclass * phase
cls_to = nclass * (phase + 1)
if seed == 0:
with open('./misc/class100.txt', 'r') as f:
class_name = f.readlines()
for c in class_name:
c = c.split('\n')[0]
classes.append(c)
classes = classes[cls_from:cls_to]
else:
np.random.seed(seed)
class_indices = np.random.permutation(len(self.classes))[cls_from:cls_to]
for i in class_indices:
classes.append(self.classes[i])
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
assert len(classes) == nclass
return classes, class_to_idx
def _subset(self, slct_type='random', ipc=10):
n = len(self.samples)
idx_class = [[] for _ in range(self.nclass)]
for i in range(n):
label = self.samples[i][1]
idx_class[label].append(i)
min_class = np.array([len(idx_class[c]) for c in range(self.nclass)]).min()
print("# examples in the smallest class: ", min_class)
assert ipc < min_class
if slct_type == 'random':
indices = np.arange(n)
else:
raise AssertionError(f'selection type does not exist!')
samples_subset = []
idx_class_slct = [[] for _ in range(self.nclass)]
for i in indices:
label = self.samples[i][1]
if len(idx_class_slct[label]) < ipc:
idx_class_slct[label].append(i)
samples_subset.append(self.samples[i])
if len(samples_subset) == ipc * self.nclass:
break
return samples_subset
def _load_images(self, transform=None):
"""Load images on memory
"""
imgs = []
for i, (path, _) in enumerate(self.samples):
sample = self.loader(path)
if transform != None:
sample = transform(sample)
imgs.append(sample)
if i % 100 == 0:
print(f"Image loading.. {i}/{len(self.samples)}", end='\r')
print(" " * 50, end='\r')
return imgs
def __getitem__(self, index):
if not self.load_memory:
path = self.samples[index][0]
sample = self.loader(path)
else:
sample = self.imgs[index]
target = self.targets[index]
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def transform_cifar(augment=False, from_tensor=False, normalize=True):
if not augment:
aug = []
else:
aug = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
print("Dataset with basic Cifar augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=MEANS['cifar'], std=STDS['cifar'])]
else:
normal_fn = []
train_transform = transforms.Compose(cast + aug + normal_fn)
test_transform = transforms.Compose(cast + normal_fn)
return train_transform, test_transform
def transform_svhn(augment=False, from_tensor=False, normalize=True):
if not augment:
aug = []
else:
aug = [transforms.RandomCrop(32, padding=4)]
print("Dataset with basic SVHN augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=MEANS['svhn'], std=STDS['svhn'])]
else:
normal_fn = []
train_transform = transforms.Compose(cast + aug + normal_fn)
test_transform = transforms.Compose(cast + normal_fn)
return train_transform, test_transform
def transform_mnist(augment=False, from_tensor=False, normalize=True):
if not augment:
aug = []
else:
aug = [transforms.RandomCrop(28, padding=4)]
print("Dataset with basic MNIST augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=MEANS['mnist'], std=STDS['mnist'])]
else:
normal_fn = []
train_transform = transforms.Compose(cast + aug + normal_fn)
test_transform = transforms.Compose(cast + normal_fn)
return train_transform, test_transform
def transform_fashion(augment=False, from_tensor=False, normalize=True):
if not augment:
aug = []
else:
aug = [transforms.RandomCrop(28, padding=4)]
print("Dataset with basic FashionMNIST augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=MEANS['fashion'], std=STDS['fashion'])]
else:
normal_fn = []
train_transform = transforms.Compose(cast + aug + normal_fn)
test_transform = transforms.Compose(cast + normal_fn)
return train_transform, test_transform
def transform_imagenet(size=-1,
augment=False,
from_tensor=False,
normalize=True,
rrc=True,
rrc_size=-1):
if size > 0:
resize_train = [transforms.Resize(size), transforms.CenterCrop(size)]
resize_test = [transforms.Resize(size), transforms.CenterCrop(size)]
# print(f"Resize and crop training images to {size}")
elif size == 0:
resize_train = []
resize_test = []
assert rrc_size > 0, "Set RRC size!"
else:
resize_train = [transforms.RandomResizedCrop(224)]
resize_test = [transforms.Resize(256), transforms.CenterCrop(224)]
if not augment:
aug = []
# print("Loader with DSA augmentation")
else:
jittering = utils.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4)
lighting = utils.Lighting(alphastd=0.1,
eigval=[0.2175, 0.0188, 0.0045],
eigvec=[
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
aug = [transforms.RandomHorizontalFlip(), jittering, lighting]
if rrc and size >= 0:
if rrc_size == -1:
rrc_size = size
rrc_fn = transforms.RandomResizedCrop(rrc_size, scale=(0.5, 1.0))
aug = [rrc_fn] + aug
print("Dataset with basic imagenet augmentation and RRC")
else:
print("Dataset with basic imagenet augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=MEANS['imagenet'], std=STDS['imagenet'])]
else:
normal_fn = []
train_transform = transforms.Compose(resize_train + cast + aug + normal_fn)
test_transform = transforms.Compose(resize_test + cast + normal_fn)
return train_transform, test_transform
def transform_tiny_imagenet(size=-1,
augment=False,
from_tensor=False,
normalize=True,
rrc=True,
rrc_size=-1):
if size > 0:
resize_train = [transforms.Resize(size), transforms.CenterCrop(size)]
resize_test = [transforms.Resize(size), transforms.CenterCrop(size)]
# print(f"Resize and crop training images to {size}")
elif size == 0:
resize_train = []
resize_test = []
assert rrc_size > 0, "Set RRC size!"
else:
resize_train = [transforms.RandomCrop(64, padding=4)]
resize_test = []
if not augment:
aug = []
# print("Loader with DSA augmentation")
else:
jittering = utils.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4)
lighting = utils.Lighting(alphastd=0.1,
eigval=[0.2175, 0.0188, 0.0045],
eigvec=[
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
aug = [transforms.RandomHorizontalFlip(), jittering, lighting]
if rrc and size >= 0:
if rrc_size == -1:
rrc_size = size
rrc_fn = transforms.RandomResizedCrop(rrc_size, scale=(0.5, 1.0))
aug = [rrc_fn] + aug
print("Dataset with basic imagenet augmentation and RRC")
else:
print("Dataset with basic imagenet augmentation")
if from_tensor:
cast = []
else:
cast = [transforms.ToTensor()]
if normalize:
normal_fn = [transforms.Normalize(mean=[0.4802, 0.4481, 0.3975], std=[0.2302, 0.2265, 0.2262])]
else:
normal_fn = []
train_transform = transforms.Compose(resize_train + cast + aug + normal_fn)
test_transform = transforms.Compose(resize_test + cast + normal_fn)
return train_transform, test_transform
class _RepeatSampler(object):
""" Sampler that repeats forever.
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)
def __len__(self):
return len(self.sampler)
class ClassBatchSampler(object):
"""Intra-class batch sampler
"""
def __init__(self, cls_idx, batch_size, drop_last=True):
self.samplers = []
for indices in cls_idx:
n_ex = len(indices)
sampler = torch.utils.data.SubsetRandomSampler(indices)
batch_sampler = torch.utils.data.BatchSampler(sampler,
batch_size=min(n_ex, batch_size),
drop_last=drop_last)
self.samplers.append(iter(_RepeatSampler(batch_sampler)))
def __iter__(self):
while True:
for sampler in self.samplers:
yield next(sampler)
def __len__(self):
return len(self.samplers)
class MultiEpochsDataLoader(torch.utils.data.DataLoader):
"""Multi epochs data loader
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._DataLoader__initialized = False
self.batch_sampler = _RepeatSampler(self.batch_sampler)
self._DataLoader__initialized = True
self.iterator = super().__iter__() # Init iterator and sampler once
self.convert = None
if self.dataset[0][0].dtype == torch.uint8:
self.convert = transforms.ConvertImageDtype(torch.float)
if self.dataset[0][0].device == torch.device('cpu'):
self.device = 'cpu'
else:
self.device = 'cuda'
def __len__(self):
return len(self.batch_sampler)
def __iter__(self):
for i in range(len(self)):
data, target = next(self.iterator)
if self.convert != None:
data = self.convert(data)
yield data, target
class ClassDataLoader(MultiEpochsDataLoader):
"""Basic class loader (might be slow for processing data)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.nclass = self.dataset.nclass
self.cls_idx = [[] for _ in range(self.nclass)]
for i in range(len(self.dataset)):
# print(self.dataset.targets[i])
self.cls_idx[self.dataset.targets[i]].append(i)
self.class_sampler = ClassBatchSampler(self.cls_idx, self.batch_size, drop_last=True)
self.shuffle = kwargs.get('shuffle', True)
self.cls_targets = torch.tensor([np.ones(self.batch_size, dtype=int) * c for c in range(int(self.nclass))],
dtype=torch.long,
requires_grad=False,
device='cuda')
def class_sample(self, c, ipc=-1):
if ipc > 0:
if self.shuffle:
indices = random.sample(self.cls_idx[c], ipc)
else:
indices = self.cls_idx[c][:ipc]
else:
indices = next(self.class_sampler.samplers[c])
data = torch.stack([self.dataset[i][0] for i in indices])
target = torch.tensor([self.dataset.targets[i] for i in indices])
return data.cuda(), target.cuda()
def sample(self):
data, target = next(self.iterator)
if self.convert != None:
data = self.convert(data)
return data.cuda(), target.cuda()
class ClassMemDataLoader():
"""Class loader with data on GPUs
"""
def __init__(self, dataset, batch_size, drop_last=False, device='cuda'):
self.device = device
self.batch_size = batch_size
self.dataset = dataset
self.data = [d[0].to(device) for d in dataset] # uint8 data
self.targets = torch.tensor(dataset.targets, dtype=torch.long, device=device)
sampler = torch.utils.data.SubsetRandomSampler([i for i in range(len(dataset))])
self.batch_sampler = torch.utils.data.BatchSampler(sampler,
batch_size=batch_size,
drop_last=drop_last)
self.iterator = iter(_RepeatSampler(self.batch_sampler))
self.nclass = dataset.nclass
self.cls_idx = [[] for _ in range(self.nclass)]
for i in range(len(dataset)):
self.cls_idx[self.targets[i]].append(i)
self.class_sampler = ClassBatchSampler(self.cls_idx, self.batch_size, drop_last=True)
self.cls_targets = torch.tensor([np.ones(batch_size, dtype=int) * c for c in range(int(self.nclass))],
dtype=torch.long,
requires_grad=False,
device=self.device)
self.convert = None
if self.data[0].dtype == torch.uint8:
self.convert = transforms.ConvertImageDtype(torch.float)
def class_sample(self, c, ipc=-1):
if ipc > 0:
indices = self.cls_idx[c][:ipc]
else:
indices = next(self.class_sampler.samplers[c])
data = torch.stack([self.data[i] for i in indices])
if self.convert != None:
data = self.convert(data)
# print(self.targets[indices])
return data, self.cls_targets[c]
def sample(self):
indices = next(self.iterator)
data = torch.stack([self.data[i] for i in indices])
if self.convert != None:
data = self.convert(data)
target = self.targets[indices]
return data, target
def __len__(self):
return len(self.batch_sampler)
def __iter__(self):
for _ in range(len(self)):
data, target = self.sample()
yield data, target
class ClassPartMemDataLoader(MultiEpochsDataLoader):
"""Class loader for ImageNet-100 with multi-processing.
This loader loads target subclass samples on GPUs
while can loading full training data from storage.
"""
def __init__(self, subclass_list, real_to_idx, *args, **kwargs):
super().__init__(*args, **kwargs)
self.nclass = self.dataset.nclass
self.mem_cls = subclass_list
self.real_to_idx = real_to_idx
self.cls_idx = [[] for _ in range(self.nclass)]
idx = 0
self.data_mem = []
print("Load target class data on memory..")
for i in range(len(self.dataset)):
c = self.dataset.targets[i]
if c in self.mem_cls:
self.data_mem.append(self.dataset[i][0].cuda())
self.cls_idx[c].append(idx)
idx += 1
if self.data_mem[0].dtype == torch.uint8:
self.convert = transforms.ConvertImageDtype(torch.float)
print(f"Subclass: {subclass_list}, {len(self.data_mem)}")
class_batch_size = 64
self.class_sampler = ClassBatchSampler([self.cls_idx[c] for c in subclass_list],
class_batch_size,
drop_last=True)
self.cls_targets = torch.tensor([np.ones(class_batch_size, dtype=int) * c for c in range(self.nclass)],
dtype=torch.long,
requires_grad=False,
device='cuda')
def class_sample(self, c, ipc=-1):
if ipc > 0:
indices = self.cls_idx[c][:ipc]
else:
idx = self.real_to_idx[c]
indices = next(self.class_sampler.samplers[idx])
data = torch.stack([self.data_mem[i] for i in indices])
if self.convert != None:
data = self.convert(data)
# print([self.dataset.targets[i] for i in self.slct[indices]])
return data, self.cls_targets[c]
def sample(self):
data, target = next(self.iterator)
if self.convert != None:
data = self.convert(data)
return data.cuda(), target.cuda()
def load_data(args):
"""Load training and validation data
"""
if args.dataset.startswith('cifar'):
train_transform, test_transform = transform_cifar(augment=args.augment)
if args.dataset == 'cifar100':
train_dataset = datasets.CIFAR100(args.data_dir, train=True, transform=train_transform)
val_dataset = datasets.CIFAR100(args.data_dir, train=False, transform=test_transform)
nclass = 100
elif args.dataset == 'cifar10':
train_dataset = datasets.CIFAR10(args.data_dir, train=True, transform=train_transform)
val_dataset = datasets.CIFAR10(args.data_dir, train=False, transform=test_transform)
nclass = 10
else:
raise Exception('unknown dataset: {}'.format(args.dataset))
elif args.dataset == 'svhn':
train_transform, test_transform = transform_svhn(augment=args.augment)
train_dataset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='train',
download=False,
transform=train_transform)
val_dataset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='test',
download=False,
transform=test_transform)
nclass = 10
elif args.dataset == 'fashion':
train_transform, test_transform = transform_fashion(augment=args.augment)
train_dataset = datasets.FashionMNIST(args.data_dir, train=True, transform=train_transform)
val_dataset = datasets.FashionMNIST(args.data_dir, train=False, transform=test_transform)
nclass = 10
elif args.dataset == 'mnist':
train_transform, test_transform = transform_mnist(augment=args.augment)
train_dataset = datasets.MNIST(args.data_dir, train=True, transform=train_transform)
val_dataset = datasets.MNIST(args.data_dir, train=False, transform=test_transform)
nclass = 10
elif args.dataset == 'imagenet':
traindir = os.path.join(args.imagenet_dir, 'train')
valdir = os.path.join(args.imagenet_dir, 'val')
train_transform, test_transform = transform_imagenet(augment=args.augment,
size=args.size,
from_tensor=False)
train_dataset = ImageFolder(traindir,
train_transform,
nclass=args.nclass,
seed=args.dseed,
slct_type=args.slct_type,
ipc=args.ipc,
load_memory=args.load_memory)
val_dataset = ImageFolder(valdir,
test_transform,
nclass=args.nclass,
seed=args.dseed,
load_memory=args.load_memory)
nclass = len(train_dataset.classes)
assert nclass == len(val_dataset.classes)
for i in range(len(train_dataset.classes)):
assert train_dataset.classes[i] == val_dataset.classes[i]
assert np.array(train_dataset.targets).max() == nclass - 1
assert np.array(val_dataset.targets).max() == nclass - 1
print("Subclass is extracted: ")
print(" #class: ", nclass)
print(" #train: ", len(train_dataset.targets))
if args.ipc > 0:
print(f" => subsample ({args.slct_type} ipc {args.ipc})")
print(" #valid: ", len(val_dataset.targets))
else:
raise Exception('unknown dataset: {}'.format(args.dataset))
train_loader = MultiEpochsDataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
persistent_workers=args.workers > 0,
pin_memory=True)
val_loader = MultiEpochsDataLoader(val_dataset,
batch_size=args.batch_size // 2,
shuffle=False,
persistent_workers=True,
num_workers=4,
pin_memory=True)
return train_dataset, train_loader, val_loader, nclass
def img_denormlaize(img, dataname='imagenet'):
"""Scaling and shift a batch of images (NCHW)
"""
mean = MEANS[dataname]
std = STDS[dataname]
nch = img.shape[1]
mean = torch.tensor(mean, device=img.device).reshape(1, nch, 1, 1)
std = torch.tensor(std, device=img.device).reshape(1, nch, 1, 1)
return img * std + mean
def save_img(save_dir, img, unnormalize=True, max_num=200, size=64, nrow=10, dataname='imagenet'):
img = img[:max_num].detach()
if unnormalize:
img = img_denormlaize(img, dataname=dataname)
img = torch.clamp(img, min=0., max=1.)
if img.shape[-1] > size:
img = F.interpolate(img, size)
save_image(img.cpu(), save_dir, nrow=nrow)
if __name__ == '__main__':
from argument import args
traindir = os.path.join(args.imagenet_dir, 'train')
train_transform, test_transform = transform_imagenet(augment=False,
from_tensor=False,
size=args.size,
rrc=False,
normalize=False)
train_dataset = ImageFolder(traindir,
train_transform,
nclass=args.nclass,
seed=args.dseed,
slct_type=args.slct_type,
ipc=args.ipc,
load_memory=args.load_memory)
loader = ClassDataLoader(train_dataset,
batch_size=args.batch_real,
num_workers=args.workers,
shuffle=True,
pin_memory=True,
drop_last=True)
data = []
for c in range(args.nclass):
img, _ = loader.class_sample(c, args.ipc)
data.append(img)
data = torch.cat(data)
print(data.shape)
torch.save(data, "./results/samples/init/data.pt")
print("image saved!")